
NAVAL POSTGRADUATE SCHOOL
Monterey, California

DISSERTATION

HETEROGENEOUS SOFTWARE SYSTEM
INTEROPERABILITY THROUGH COMPUTER-AIDED

RESOLUTION OF MODELING DIFFERENCES

by

Paul E. Young

June 2002

 Dissertation Supervisor: Luqi

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2002

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Heterogeneous Software System Interoperability
Through Computer-Aided Resolution of Modeling Differences

6. AUTHOR(S) Paul E. Young

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Space and Naval Warfare Systems Center- San Diego
San Diego, CA 92152-5031

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Meeting future system requirements by integrating existing stand-alone systems is

attracting renewed interest. Computer communications advances, functional similarities in
related systems, and enhanced information description mechanisms suggest that improved
capabilities may be possible; but full realization of this potential can only be achieved if stand-
alone systems are fully interoperable. Interoperability among independently developed
heterogeneous systems is difficult to achieve: systems often have different architectures,
different hardware platforms, different operating systems, different host languages and different
data models.
The Object-Oriented Method for Interoperability (OOMI) introduced in this dissertation
resolves modeling differences in a federation of independently developed heterogeneous
systems, thus enabling system interoperation. First a model of the information and operations
shared among systems, termed a Federation Interoperability Object Model (FIOM), is defined.
Construction of the FIOM is done prior to run-time with the assistance of a specialized toolset,
the OOMI Integrated Development Environment (OOMI IDE). Then at runtime OOMI
Translators utilize the FIOM to automatically resolve differences in exchanged information and
in inter-system operation signatures.

15. NUMBER OF
PAGES

306

14. SUBJECT TERMS Interoperability, Model Correlation, Heterogeneous Software Systems,
XML, Data Binding, Modeling Difference Resolution

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

HETEROGENEOUS SOFTWARE SYSTEM INTEROPERABILITY THROUGH
COMPUTER-AIDED RESOLUTION OF MODELING DIFFERENCES

Paul E. Young

Captain, United States Navy
B.S., University of Mississippi, 1977
M.S., University of Mississippi, 1985

M.S., Naval Postgraduate School, 2001

Submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 2002

Author: __
Paul E. Young

Approved by:

______________________ _______________________
Luqi Valdis Berzins
Professor of Computer Science Professor of Computer Science
Dissertation Supervisor

______________________ _______________________
William Kemple Edmund Freeman
Associate Professor of Command, Science Applications
Control and Communications International Corporation

______________________ _______________________
Jun Ge Richard Riehle
Research Associate Instructor of Computer Science

Approved by: __
Chris Eagle, Chair, Department of Computer Science

Approved by: __

Carson K. Eoyang, Associate Provost for Academic Affairs

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Meeting future system requirements by integrating existing stand-alone systems is

attracting renewed interest. Computer communications advances, functional similarities

in related systems, and enhanced information description mechanisms suggest that

improved capabilities may be possible; but full realization of this potential can only be

achieved if stand-alone systems are fully interoperable. Interoperability among

independently developed heterogeneous systems is difficult to achieve: systems often

have different architectures, different hardware platforms, different operating systems,

different host languages and different data models.

The Object-Oriented Method for Interoperability (OOMI) introduced in this

dissertation resolves modeling differences in a federation of independently developed

heterogeneous systems, thus enabling system interoperation. First a model of the

information and operations shared among systems, termed a Federation Interoperability

Object Model (FIOM), is defined. Construction of the FIOM is done prior to run-time

with the assistance of a specialized toolset, the OOMI Integrated Development

Environment (OOMI IDE). Then at runtime OOMI translators utilize the FIOM to

automatically resolve differences in exchanged information and in inter-system operation

signatures.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. QUEST FOR SYSTEM INTEROPERABILITY... 1
B. LIMITATIONS WITH CURRENT APPROACHES TOWARD

ACHIEVING INTEROPERABILITY.. 4
C. RESEARCH QUESTION AND HYPOTHESIS.. 5
D. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY

(OOMI) OVERVIEW... 6
E. CONTRIBUTIONS PROVIDED BY THIS DISSERTATION 7
F. IMPACT AND LONG-TERM SIGNIFICANCE OF

DISSERTATION’S CONTRIBUTIONS .. 7
G. DISSERTATION ORGANIZATION ... 8

II. SURVEY OF PREVIOUS WORK ON ACHIEVING
INTEROPERABILITY AMONG INDEPENDENTLY DEVELOPED
SYSTEMS .. 11
A. MODELING DIFFERENCES AMONG SYSTEMS................................. 11

1. Causes of Modeling Differences ... 11
2. Kinds of Modeling Differences... 11

a. Heterogeneity of Hardware and Operating Systems............. 12
b. Heterogeneity of Organizational Models............................... 12
c. Heterogeneity of Structure... 13
d. Heterogeneity of Presentation.. 13
e. Heterogeneity of Meaning.. 14
f. Heterogeneity of Scope... 14
g. Heterogeneity of Level of Abstraction 15
h. Heterogeneity of Temporal Validity....................................... 15

B. CRITERIA FOR EVALUATING INTEROPERABILITY
APPROACHES ... 15
1. Types of Heterogeneity Addressed .. 15
2. Capability for Application of Computer Aid for Model

Correlation... 16
3. Required Knowledge of Remote Operations 16
4. Required Modification to Existing System 17
5. Translation Methodology ... 17
6. Capability for Application of Computer Aid for Translation

Development .. 17
7. Support for Federation Extensibility... 18
8. Information Exchange Versus Joint Task Execution 18

C. APPROACHES FOR ACHIEVING INTEROPERABILITY
AMONG HETEROGENEOUS SYSTEMS.. 19
1. Common Object Request Broker Architecture (CORBA)............ 19

a. CORBA Overview... 19

vii

b. CORBA Architecture Overview ... 20
c. Evaluation of Interoperability Approach 23

2. COM, DCOM, COM+ .. 30
a. Component Object Model (COM).. 30
b. Distributed Component Object Model (DCOM).................... 35
c. Component Object Model Plus (COM+) 37
d. Evaluation of Interoperability Approach 38

3. Java 2 Enterprise Edition (J2EE) .. 44
a. J2EE Overview ... 44
b. Evaluation of Interoperability Approach 49

4. SeeBeyond Integration Suite .. 53
a. e*GateTM Integrator Overview ... 53
b. e*Index Global Identifier Overview....................................... 58
c. Evaluation of Interoperability Approach 60

5. The High Level Architecture for Modeling and Simulation
(HLA).. 64
a. HLA Elements .. 64
b. HLA Specification .. 65
c. Evaluation of Interoperability Approach 68

6. eXtensible Markup Language (XML)... 73
a. XML basics ... 74
b. Constraining Content ... 75
c. Programmatic Access ... 76
d. Translations .. 77
e. XML Data-Binding... 77
f. Evaluation of Interoperability Approach 80

D. SUMMARY.. 84

III. THEORETICAL FOUNDATION FOR COMPONENT SYSTEM OBJECT
CORRELATION... 89
A. CORRELATION MEASURES OF EFFECTIVENESS........................... 89
B. DATA CORRELATION METHODS... 90

1. Classical Approaches .. 91
a. Browsing ... 91
b. Keyword Matching ... 91
c. Multi-Attribute Search ... 92
d. Classical Approach Applicability to Interoperability

Correlation Problem... 94
2. Formal Specifications.. 94

a. Syntax Based Approach ... 95
b. Semantics Based Approach.. 96
c. Approach Using Component Syntax and Semantics 98
d. Formal Specifications Applicability to Interoperability

Correlation Problem... 112
3. Artificial Intelligence Approaches ... 113

a. Natural Language Techniques .. 113
b. Neural Networks... 118

viii

c. Applicability of Artificial Intelligence Approaches to
Interoperability Correlation Problem.................................. 122

C. SUMMARY.. 123

IV. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)....... 125
A. INTRODUCTION... 125
B. METHODS FOR RESOLVING HETEROGENEITY AMONG

SYSTEMS .. 125
C. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY

(OOMI)... 128
1. Federation Interoperability Object Model (FIOM)..................... 130

a. Categories of Modeling Differences 130
b. FIOM Composition .. 135

2. OOMI Integrated Development Environment (IDE) 146
3. OOMI Translator.. 148

D. SUMMARY.. 150

V. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY
INTEGRATED DEVELOPMENT ENVIRONMENT (OOMI IDE) 153
A. OOMI IDE PURPOSE.. 153
B. OOMI IDE DEVELOPMENT CONSIDERATIONS 154
C. FEDERATION INTEROPERABILITY OBJECT MODEL (FIOM)

CONSTRUCTION PROCESS... 155
1. Add Component System External Interface................................. 157
2. Manage Federation Entities (FEs) ... 158
3. Register Component Class Representation (CCR) 159

a. Finding FE Corresponding To CCR Being Registered...... 159
b. Modifying FIOM to Provide Required Correspondence

Between CCR and FCR Schema ... 160
c. Adding CCR to FEV Whose FCR Schema Exhibits a

One-To-One Correspondence with the CCR Schema
Being Registered... 161

d. Adding Translations Between Component And
Federation Class Representations Of Real-World Entity ... 161

4. Update Federation Ontology .. 162
5. Generate System-Specific Translator Information...................... 163

D. OOMI IDE PROTOTYPE ... 163
1. User Interface .. 165
2. FIOM Construction Manager .. 165

a. Federation Entity Manager.. 165
b. Component Model Correlator .. 170
c. Translation Generator.. 171

3. Translator Information Generator.. 172
4. Federation Ontology Manager... 174
5. FIOM Database ... 174
6. Translation Library .. 175
7. Federation Ontology Database... 175

ix
8. Translator Information Database.. 175

E. OOMI IDE PROTOTYPE USER INTERFACE DESIGN..................... 176
1. OOMI IDE GUI Components .. 176
2. FIOM Construction Phase Folders.. 176
3. OOMI IDE Toolbar, and Directory and Display Panes 176

a. ADD Component System External Interface 177
b. MANAGE Federation Entities... 178
c. REGISTER Component Class Representation 179
d. UPDATE Federation Ontology.. 181
e. GENERATE System-Specific Translator Information....... 182

F. SUMMARY.. 183

VI. COMPONENT SYSTEM OBJECT CORRELATION UNDER THE
OBJECT ORIENTED METHOD FOR INTEROPERABILITY (OOMI)....... 185
A. CORRELATION OF COMPONENT SYSTEM AND FEDERATION

REPRESENTATIONS OF A REAL-WORLD ENTITY........................ 185
B. OOMI CORRELATION METHODOLOGY.. 187

1. Generating Syntactic and Semantic Information Used in the
Correlation Process ... 188
a. Generating Components Used By Semantic Matching

Process .. 188
b. Generating Components Used By Syntactic Matching

Process .. 190
2. Using Syntactic and Semantic Information to Correlate

Component and Federation Representations of Real-World
Entities.. 200
a. Semantic Correlation Process.. 201
b. Syntactic Correlation Process .. 201

C. SUMMARY.. 205

VII. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)
TRANSLATOR ... 207
A. TRANSLATOR OVERVIEW ... 207
B. TRANSLATOR ARCHITECTURAL ALTERNATIVES...................... 208
C. TRANSLATOR FUNCTION... 212

1. Source To Intermediate Model Translation 212
a. Converting From XML to Object Representation of

Exported Information... 213
b. Translation From Source Object Representation to

Intermediate Object Representation 217
c. Converting From Intermediate Object Representation of

Exported Information to XML Instance Document
Representation.. 219

2. Intermediate To Destination Model Translation.......................... 221
a. Converting From XML Document Representation back to

Intermediate Object Representation 223

x

b. Resolving Differences in View between Received
Intermediate Model and Destination Model of Real-World
Entity... 226

c. Translation From Intermediate Object Representation to
Destination Object Representation 229

d. Converting From Destination Object Representation to
Destination XML Document Representation 230

D. TRANSLATOR SUMMARY... 231

VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 237
A. REVIEW OF CRITERIA USED FOR EVALUATING

INTEROPERABILITY APPROACHES AND LIMITATIONS SEEN
IN CURRENT SYSTEMS.. 237

B. EVALUATION OF OBJECT-ORIENTED METHOD FOR
INTEROPERABILITY AGAINST INTEROPERABILITY
COMPARISON CRITERIA .. 238
1. Types of Heterogeneity Addressed .. 238
2. Capability for Application of Computer Aid for Model

Correlation... 240
3. Required Knowledge of Remote Operations 241
4. Required Modification to Existing System 242
5. Translation Methodology ... 243
6. Capability for Application of Computer Aid for Translation

Development .. 243
7. Support for Federation Extensibility... 243
8. Information Exchange Versus Joint Task Execution 244

C. RECOMMENDATIONS FOR FUTURE RESEARCH.......................... 245
1. Evaluation of Efficiency and Effectiveness of OOMI in

Creating an Interoperable Federation of Systems 245
2. Enhancements to Correlation Methodology 246

a. Semantic Correlation Methodology..................................... 246
b. Syntactic Correlation Methodology 247

3. Enabling Join Operations for Federation Entity View
Definition.. 248

4. Expansion of Correlation Methodology Application During
FIOM Construction... 248
a. Application of Correlation Methodology to Mapping of

Corresponding Attributes and Operations during
Translation Generation.. 248

b. Application of Correlation Methodology and Behavioral
Equivalence Determination Algorithms to Modification of
FIOM to Provide Required One-To-One Correspondence
Between CCR and FCR Schemas During CCR
Registration... 248

5. Extending OOMI IDE to Operate as a Distributed Network
Application... 249

6. Resolution of Modeling Differences in Real-Time Systems......... 250
D. CONCLUDING REMARKS.. 251

xi

APPENDIX A: MODIFYING FIOM TO PROVIDE REQUIRED CORRESPON-
DENCE BETWEEN CCR AND FCR SCHEMAS DURING CCR
REGISTRATION.. 253
A. ADDING NEW FEDERATION ENTITY (FE) TO FEDERATION

INTEROPERABILITY OBJECT MODEL (FIOM)............................... 253
B. ADDING COMPONENT CLASS REPRESENTATION (CCR) TO

EXISTING FEDERATION ENTITY (FE) .. 255
1. Adding CCR to Existing Federation Entity View (FEV)............. 256
2. Adding New View to FE.. 257

a. CCR Schema Properties Subset of FCR Schema
Properties .. 259

b. FCR Schema Properties Subset of CCR Schema
Properties .. 262

c. CCR and FCR Schema Have Properties in Common, But
No Subset Relation Exists. ... 266

d. No Correspondence Between CCR and FCR Schemas 270
C. SUMMARY.. 275

LIST OF REFERENCES. .. 277

INITIAL DISTRIBUTION LIST .. 283

xii

LIST OF FIGURES

Figure I-1. Quest for System Interoperability ... 2
Figure I-2. Impediments to System Interoperability ... 4
Figure II-1. OMG’s Object Management Architecture (From [Pop98]) 19
Figure II-2. Binary Structure of a COM Object (From [Kol00]) 33
Figure II-3. DCOM Overall Architecture (From [Kol00])... 36
Figure II-4. Use of MIDL Proxy and Stub Constructs for Achieving Programming

Language Transparency (From [Kol00]) .. 37
Figure II-5. Data Types Supported by COM+ (From [Kir97]) .. 38
Figure II-6. e*Gate Components (From [EGI00]).. 54
Figure II-7. e*Gate Architecture (From [EGI00]) .. 56
Figure II-8. e*Gate Integration Process (From [Smi01]) ... 57
Figure II-9. e*Index Global Identifier Customer Detail Screen (From [EIGI00]) 59
Figure II-10. Example XML Document ... 74
Figure II-11. XML and Java Relationships (From [Rei01])... 79
Figure III-1. Three Elements of Faceted Approach (From [Pri91]) 93
Figure III-2. Multi-level Filtering Model (From [Her97])... 109
Figure III-3. Semantic Integration Procedure (From [LC94, LC00]) 119
Figure IV-1. Object-Oriented Method for Interoperability (OOMI) Key Components..... 130
Figure IV-2. Differing Views of Real-World Entity.. 133
Figure IV-3. Differing Real-World Entity View Representations 134
Figure IV-4. OOMI Federation Entity (FE) Archetype ... 136
Figure IV-5. Example Views of a Federation Entity with Federation and Component

Class Representations.. 138
Figure IV-6. OOMI Archetype for Federation and Component Class Representations

(FCR and CCR) Showing Constituent Schema, Syntax, and Semantics
Classes... 139

Figure IV-7. FCR and CCR Schemas for Example Ground Combat Vehicle 140
Figure IV-8. FCR-CCR Translation Class ... 143
Figure IV-9. FCR Schema Inheritance Hierarchy.. 145
Figure IV-10. Translator - FIOM Interaction... 149
Figure V-1. Use-Case Model of Candidate FIOM Construction Process......................... 156
Figure V-2. OOMI IDE Block Diagram... 164
Figure V-3. OOMI IDE GUI Components ... 177
Figure V-4. ADD Component System External Interface Folder Display and

Functionality.. 178
Figure V-5. MANAGE Federation Entities Folder Display and Functionality 179
Figure V-6. REGISTER Component Class Representation Display and Functionality.... 180
Figure V-7. REGISTER CCR Folder Translation Generation Window 181
Figure V-8. Translation Generated During REGISTER CCR Phase 182
Figure VI-1. Back-Propagation Neural Network Architecture in OOMI IDE (After

[LC00]).. 198
Figure VI-2. Example Neural Network Training Data and Target Result (After [She02])199

xiii

Figure VI-3. Training OOMI IDE Neural Networks (After [LC00]) 200
Figure VI-4. Discriminator Vectors for Example MechanizedCombatVehicle CCR

(After [She02]) .. 202
Figure VI-5. Using Trained Neural Network to Evaluate Attribute and Operation

Correspondence (After [LC00]) .. 203
Figure VI-6. Example CCR-FCR Comparison Matrix .. 203
Figure VI-7. Computing Single Value for CCR-FCR Comparison Matrix 204
Figure VII-1. Source and Destination System Translator Implementation 208
Figure VII-2. Source-System-Only Translator Implementation.. 209
Figure VII-3. Destination-System-Only Translator Implementation 210
Figure VII-4. Middleware Translator Implementation.. 211
Figure VII-5. Process for Converting Source XML Instance Document to its Equivalent

CCR Schema Object.. 214
Figure VII-6. Source XML Document “mechanizedCombatVehicle.xml” 215
Figure VII-7. Source XML Schema “mechanizedCombatVehicle.xsd” Excerpt 216
Figure VII-8. Converting From XML to Object Representation of Exported Information 218
Figure VII-9. CCR Schema Object to FCR Schema Object Translation 219
Figure VII-10. Converting from Source to Intermediate Object Representations 220
Figure VII-11. Process for Converting FCR Schema Object to its Equivalent XML

Instance Document.. 221
Figure VII-12. Conversion from Intermediate Object Representation to XML Document

Representation... 222
Figure VII-13. Intermediate XML Instance Document

“groundCombatVehicle_View1.xml” ... 223
Figure VII-14. Process for Converting XML Instance Document to its Equivalent FCR

Schema Object... 224
Figure VII-15. Conversion from XML Instance Document Representation back to

Intermediate Object Representation .. 225
Figure VII-16. Example FCR Schema Inheritance Hierarchy Excerpt 228
Figure VII-17. FCR Schema Object to CCR Schema Object Translation 229
Figure VII-18. Translating from Intermediate to Destination Object Representation 230
Figure VII-19. Process for Converting CCR Schema Object to its Equivalent XML

Instance Document.. 231
Figure VII-20. Destination XML Schema "armoredFightingVehicle.xsd"........................... 232
Figure VII-21. Conversion From Destination Object Representation to Destination XML

Instance Document Representation... 233
Figure VII-22. Destination XML Instance Document "armoredFightingVehicle.xml"........ 234
Figure VII-23. Source to Intermediate Model Translation.. 235
Figure VII-24. Intermediate to Destination Model Translation .. 236
Figure A-1. No FE in FIOM Corresponding to CCR Being Registered........................... 254
Figure A-2. New FE Defined With FEV Having Same Perspective of Real-World

Entity as CCR Being Registered ... 256
Figure A-3. One-To-One Correspondence Between CCR and FCR Schema Properties . 257
Figure A-4. CCR Added to Federation Entity View Exhibiting One-To-One

Correspondence Between CCR and FCR Schema Properties....................... 258
Figure A-5. CCR Schema Properties Subset of FCR Schema Properties......................... 260

xiv

Figure A-6. Generalized FCR Schema Added to FEV... 261
Figure A-7. FEV Containing Generalized FCR Schema Defined for FE......................... 262
Figure A-8. FCR Schema Properties Subset of CCR Schema Properties......................... 263
Figure A-9. Specialized FCR Schema Added to FEV.. 264
Figure A-10. FEV Containing Specialized FCR Schema Added to FE 265
Figure A-11. CCR and FCR Schema Have Properties in Common, But No Subset

Relation Exists... 267
Figure A-12. Sibling to Existing FCR Schema Added to FEV .. 268
Figure A-13. FEV With FCR Schema Sibling to Existing FCR Schema Added to FE 269
Figure A-14. No Correspondence Between CCR Schema Being Registered and Existing

FCR Schemas in FE .. 272
Figure A-15. New Root FCR Schema With Child FCR Schema Corresponding to CCR

Schema Being Registered Included with FEV.. 273
Figure A-16. FEV With FCR Schema Sibling to Previous Existing Root FCR Schema

Added to FE .. 274

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

LIST OF TABLES

Table II-1. Evaluation of CORBA Support for Resolution of Modeling Differences 24
Table II-2. Evaluation of COM, DCOM, and COM+ Support for Resolution of

Modeling Differences.. 39
Table II-3. Evaluation of J2EE Support for Resolution of Modeling Differences............ 49
Table II-4. Evaluation of SeeBeyond Support for Resolution of Modeling Differences.. 60
Table II-5. Evaluation of HLA Support for Resolution of Modeling Differences............ 69
Table II-6. Evaluation of XML Support for Resolution of Modeling Differences 80
Table III-1. Metadata and Data-Content-Based Discriminators Used in SEMINT

(From [LC00])... 121
Table IV-1. Comparison of Multidatabase Heterogenity Resolution Methods

(after [HL96]).. 128
Table VI-1. XML Schema Fields Used for Keyword Determination (From [Pug01]) 189
Table VI-2. Metadata Based Discriminators Used in Syntactic Correlation Process

(After [She02]) .. 193
Table VI-3. Discriminator Values Used for Syntactic Correlation (After [She02])......... 196
Table VI-4. Discriminator Values Used for Syntactic Correlation (continued) (After

[She02])... 197
Table VIII-1. Evaluation of OOMI Support for Resolution of Modeling Differences 239

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

ACKNOWLEDGMENTS

I would like to offer my sincere thanks to my dissertation supervisor, Dr. Luqi,

and to all of the members of my dissertation committee: Dr. Valdis Berzins, Dr. Edmund

Freeman, Dr. Jun Ge, Dr. William Kemple, and Mr. Richard Riehle. Your guidance,

support, and encouragement have enabled me to better understand the complexities

involved in achieving system interoperability. This understanding has permitted me to

make significant contributions toward resolving modeling differences among systems, a

key factor for enabling the sharing of information and tasks among heterogeneous

systems.

Although not members of my committee, Dr. Mantak Shing, Dr. Craig

Rasmussen, and Dr. Bret Michael also supported me in my studies. They were always

willing to take the time to help, regardless of their many other responsibilities.

I would also like to thank the members of the interoperability working group who

have helped and assisted me along the way: LT Todd Ehrhardt, CPT Bryan Lyttle,

Capt Randy Pugh, MAJ Brent Christie, Mr. Shong Cheng Lee, LT Steve Shedd, and

LT George Lawler. With your help, I was able to turn my abstract, often vague notion of

a federation interoperability model into a concrete, demonstrable foundation for

continued research.

Thanks to SPAWAR Systems Center San Diego for providing funding support for

this research under their SPAWAR Fellowship program. Equipment and travel funded

by this fellowship were key enablers of this effort.

And finally, a special thank you to my wife, Betty, and daughters, Elizabeth and

Emilee. You have done so much to enable me to focus on this sometimes seemingly

insurmountable challenge. Without your support, this would not have been possible!

xix

THIS PAGE INTENTIONALLY LEFT BLANK

xx

I. INTRODUCTION

A. QUEST FOR SYSTEM INTEROPERABILITY
Past acquisition and development practices in the Department of Defense (DoD)

have led to the procurement of numerous special-purpose, non-interconnected software-

intensive systems for application areas varying from embedded weapon system software

to logistic management systems. Advances in computer communications technology, the

recognition of common areas of functionality in related systems, and an increased

awareness of how enhanced information access can lead to improved capability are

driving an interest toward integration of current stand-alone systems to meet future

system requirements. In addition, the integration of Commercial Off-the-Shelf Software

(COTS) and Government Off-the-Shelf Software (GOTS) with existing legacy systems

offers an attractive alternative for enhancing the capabilities of these systems without

incurring the expense and time required for a new software development.

An example of where independently developed systems might be interconnected

to provide an increase in capability over that provided by the individual components is

illustrated in Figure I-1. In the figure, a ground-based forward observer with a hand-held

Battlefield Digital Assistant (BDA) gathers intelligence and targeting information about

the field of battle. The information gathered by the forward observer is transmitted via a

battlefield wireless network to an in-theater intelligence cell where it is processed on a

Command and Control, Computers, Communication, and Intelligence (C4I) system for

forwarding to a sea-based task force. The information is relayed to a strike planning team

onboard the task force aircraft carrier where the targeting information is used to plan a

Tomahawk strike mission using the Tomahawk Planning System (TPS) [TWS02]. Strike

mission data is forwarded to a task force launch platform where the planned mission is

loaded into the Advanced Tactical Weapons Control System (ATWCS) used to launch a

Tomahawk strike [TWS02]. The launch platform then executes the mission to destroy

the target initially designated by the forward observer. In the scenario portrayed above, a

number of independently developed systems are interconnected to provide a system-of-

systems whose combined capability exceeds that of the individual components.
 1

Figure I-1. Quest for System Interoperability

By interconnectivity, I refer to the ability of systems to communicate and

exchange information. Merely interconnecting these systems is not sufficient for

achieving the capability improvement desired. Full realization of the potential synergistic

benefits can only be achieved if system interoperability is attained. System

interoperability involves not only the ability of systems to exchange information but also

includes the capability for interaction and joint execution of tasks. [LISI98, Pit97].

Therefore, the objective in creating such a system-of-systems is not merely providing

system interconnectivity, but in achieving an interoperable system federation.

 2

In this dissertation I make a distinction between a federation of systems and an

integrated system of components. I use the term integrated system to describe an

interconnected compilation of homogenous components produced by a development team

that shares common objectives and has a common view of the problem environment

being modeled. The term system federation is used to describe an interconnected

collection of independently developed heterogeneous systems or components. The

method presented in this dissertation for achieving system interoperability focuses on the

system federation- how to achieve interoperability among a number of independently

developed systems or components that were not originally intended to interoperate. If

constructed properly, component interoperation should be one of the key design

requirements for the integrated system and the types of heterogeneities for which the

proposed method is designed to resolve should not be a factor.

A prime difficulty in achieving interoperability among heterogeneous components

of a system federation is that the component systems were developed independently,

without any requirement for interaction. Thus systems may have different architectures,

different hardware platforms, different operating systems, different host languages and

different data models. For example, as indicated in Figure I-2, each component system

might have a different model of the vehicle being targeted by the forward observer. For

instance, the forward observer’s BDA might be implemented on a Palm wireless hand-

held device, running Palm-OS and a special-purpose targeting application. The data

model used to represent the targeted vehicle employs a MechanizedCombatVehicle record

structure with elements mcvType used to indicate whether the vehicle is a tank, personnel

carrier, or reconnaissance vehicle; mcvLocation providing the vehicle’s location using

Military Grid Reference System (MGRS) coordinates; mcvTime giving the time of

observation at the specified location in Local Mean Time (LMT); and mcvRadius

specifying the maneuvering range of the vehicle in kilometers (km).

Similarly, the C4I system might be implemented on a Microsoft Windows based

workstation implemented in C++. The C4I system represents the targeted vehicle using

an ArmoredMilitaryVehicle structure containing elements designation specifying the type

of vehicle (main battle tank, missile launcher, armored personnel carrier, etc.); position

providing the vehicle’s coordinates using latitude and longitude; and time in Greenwich

Mean Time (GMT) providing the moment when vehicle observation was made and its

position recorded.

Finally, the unix-based TPS is implemented in Ada and uses an ArmoredFighting-

Vehicle record structure to model the targeted vehicle. The ArmoredFightingVehicle

record includes components afvClassification specifying the type of vehicle (battle tank,

rocket launcher, truck, etc.); afvLocation providing the vehicle coordinates using latitude

 3

and longitude; afvObsTime giving the time of observation of the vehicle at the specified

location in GMT; and afvStatus indicating whether the vehicle is operational, damaged,

or destroyed.

Short of redeveloping a new system using the consolidated requirements from the

various component systems and a common architecture, hardware platform, operating

system, host language, etc. (a cost prohibitive approach), a means must be devised to

achieve the goal of component interoperability in the face of expected limited acquisition

budgets.

MechanizedCombatVehicle

mcvType
mcvLocation (MGRS)
mcvTime (LMT)
mcvRadius (km)

MechanizedCombatVehicle

mcvType
mcvLocation (MGRS)
mcvTime (LMT)
mcvRadius (km)

MechanizedCombatVehicle

mcvType
mcvLocation (MGRS)
mcvTime (LMT)
mcvRadius (km)

ArmoredMilitaryVehicle

designation
position (lat/long)
time (GMT)

ArmoredMilitaryVehicle

designation
position (lat/long)
time (GMT)

ArmoredMilitaryVehicle

designation
position (lat/long)
time (GMT)

ArmoredFightingVehicle

afvClassification
afvLocation (lat/long)
afvObsTime (GMT)
afvStatus

ArmoredFightingVehicle

afvClassification
afvLocation (lat/long)
afvObsTime (GMT)
afvStatus

ArmoredFightingVehicle

afvClassification
afvLocation (lat/long)
afvObsTime (GMT)
afvStatus

Figure I-2. Impediments to System Interoperability

B. LIMITATIONS WITH CURRENT APPROACHES TOWARD

ACHIEVING INTEROPERABILITY
Current approaches to achieving interoperability among heterogeneous systems

include several limitations. First, they do not provide a means for resolving the complete

spectrum of modeling differences found among heterogeneous systems. Second, they do

not provide assistance in determining when different system models refer to the same

entity from the problem domain. Third, in order to access another component or system’s

state or exercise its behavior, most current approaches require the requesting system to
 4

utilize the provider system’s model of its state or behavior to access its information. This

usually requires modification to the existing systems in order to enable interoperation,

significantly limiting the applicability of the approach when constructing a system

federation from existing components where component modification is restricted by cost

or other concerns. Fourth, most approaches utilize a direct point-to-point conversion

process for resolving modeling difference among systems vice a two-step conversion

process using an intermediate model. For a federation of more than three systems, a

point-to-point approach requires a greater number of translations to be defined than does

the two-step process. Fifth, most approaches provide no or limited support to

development of the translations required to resolve modeling differences among systems.

Finally, most approaches are concerned only with the resolution of modeling differences

for information exchanged among systems and do not provide the capability for resolving

possible differences in the signatures used to access the behavior of corresponding

methods on different systems. One of the underlying causes of the limitations found in

current approaches toward achieving interoperability is the failure to provide a

comprehensive model of the information exported from or imported to systems in a

federation. Capture of this information is critical in order to be able to identify

opportunities for information exchange and joint task execution and to identify areas

where modeling differences among systems must be resolved.

C. RESEARCH QUESTION AND HYPOTHESIS
To overcome the limitations identified in Section I.B above, I explore

technologies and methods to provide an answer to the following question: Given N

heterogeneous systems, can we resolve the differences in data models and ensure

consistency in data mapping to enable interoperability among the systems? In response

to the above question I offer the following hypothesis: By using a model-based

approach, a computer-aided methodology can be provided to aid in the resolution of data

modeling differences among systems targeted for integration in order to enable system

interoperability. The Object-Oriented Method for Interoperability (OOMI) presented in

this dissertation provides such a methodology.

 5

D. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)
OVERVIEW
The current state-of-the-art for integration of heterogeneous systems involves

manually resolving differences in data modeling and mapping for each interface between

systems, in an inherently customized manner. The first step in advancing the state-of-

the-art is to develop a general model of the interoperation among systems. This model,

termed a Federation Interoperability Object Model (FIOM) under the OOMI, captures the

various component system models of the state and behavior information shared between

systems as presented by a component system’s external interface. The FIOM also

captures syntactic and semantic information about a component model in order to enable

an interoperability engineer to determine whether two component models refer to the

same entity in the problem domain. By interoperability engineer I refer to the person or

persons charged with FIOM construction. Expected qualifications for an interoperability

engineer are provided in Section V.B and their role in the FIOM construction process

detailed in Chapter V and Appendix A. Finally, the FIOM includes the mechanisms

required for resolving differences among component models.

While creation of a model to capture the interoperation among systems is itself an

advancement over the methods currently used for system interoperability, the true

benefits of the OOMI lie in the foundation provided by the FIOM for application of

computer aid. The first application of computer aid comes in the construction of an

FIOM for a specified federation of systems. The OOMI includes an Integrated

Development Environment (IDE) to aid the interoperability engineer in FIOM

construction during federation development prior to runtime. The IDE provides

computer aid to the interoperability engineer in the areas of component model

correlation, translation definition, and FIOM construction.

The final area where computer aid is applied toward achieving system

interoperability under the OOMI is in the runtime resolution of modeling differences

among systems in a federation. The OOMI includes translators that use information

contained in the FIOM created prior to runtime for resolving heterogeneities among

federation systems at runtime.

 6

E. CONTRIBUTIONS PROVIDED BY THIS DISSERTATION
Development of a model for capturing the shared state and behavior of the

components of a system federation, the use of computer aid in model construction, and

use of the resultant model to automatically resolve heterogeneities in the state and

behavior information shared among federation components are the principal contributions

of the OOMI presented in this dissertation. Furthermore, the OOMI provides a method

for addressing the resolution of the complete spectrum of heterogeneities found among

systems, something the previous interoperability work does not accomplish. Key

elements of these contributions include:

• Providing a model to capture state and behavior shared among systems in a
federation; extremely valuable aid in determining what state and behavior
information is available for sharing among systems, particularly when
modifications are required to an existing federation developed under the OOMI;

• Classification of modeling differences among autonomously developed,
heterogeneous systems as differences in what is being modeled (view) and
differences in how the modeled information is represented (representation);

• Introduction of a view inheritance hierarchy to capture the relationships among
different system models, and the exploitation of Liskov and Wing’s behavioral
notion of subtyping to determine when one model of a real-world entity’s state
and behavior may be suitable for use by another [LW94, WO00];

• Introduction of a set of interoperability engineer defined translations to resolve
differences in representation between models having the same view of a real-
world entity;

• Application of computer-aid for establishing correspondence among different
models of information shared among systems;

• Use of computer-aid in creating the translations used to resolve modeling
differences among systems;

• Automation of the run-time process used for resolving modeling differences
among the state and behavior shared between systems;

• Ability for achieving interoperability among a federation of legacy systems
without requiring extensive modifications to the existing systems.

F. IMPACT AND LONG-TERM SIGNIFICANCE OF DISSERTATION’S
CONTRIBUTIONS
Integration of heterogeneous legacy systems has historically been an essentially

manual, labor intensive, and costly evolution. The ability to automate part or all of this

integration process holds the promise of providing enhanced capability at significant time

and cost savings.

 7

While the focus of this dissertation is to provide a means for enabling existing

systems to interoperate, applicability of the OOMI is not limited to this context. The goal

for new system development should be to include requirements for interoperability into

the system design. However, the relevance of the OOMI will not be lost even if

interoperability requirements are designed into systems from the start. The desire to add

new capability to an existing system without redevelopment will make the contributions

provided in this dissertation relevant even if the goal of including interoperability

requirements into a system’s design is achieved. In addition, the same methodology for

integrating heterogeneous legacy systems can be applied to the integration of COTS and

GOTS components with existing systems to enhance their capability while minimizing

cost, an attractive possibility for any area of potential application.

G. DISSERTATION ORGANIZATION
The remainder of this dissertation is organized as follows. In Chapter II a survey

of previous work toward achieving interoperability among independently developed

systems is conducted. In this chapter I look at the causes and types of modeling

differences among systems and provide a comparison of the most pertinent existing

approaches to attaining interoperability among heterogeneous systems using a set of

common criteria for system evaluation.

Chapter III provides background information and theory on potential methods to

be used for identifying correspondences among information exported or imported by

different systems in a federation. Identification of correspondences among information is

essential for determining whether systems can interoperate. Unless there are

commonalities in the information modeled by two systems, interoperation is not possible.

Included in this chapter is an identification of a number of measures for evaluating the

effectiveness of various correlation methodologies as well as a discussion of several

methodologies considered for implementation in the OOMI IDE.

 8

In Chapter IV I introduce the Object-Oriented Method for Interoperability

(OOMI) and provide an overview of the method’s major components. The Federation

Interoperability Object Model (FIOM) captures the state and behavior shared among

systems in a federation as well as the information needed to establish correspondences

among component models and to resolve any modeling differences between

corresponding systems. The OOMI Integrated Development Environment (IDE) is used

for constructing an instance of the FIOM for a specified federation of systems. The

translator uses information captured in a specified FIOM to resolve modeling differences

among federation components at runtime.

Chapter V discusses the OOMI IDE purpose and identifies a number of

considerations that should be taken into account in constructing an IDE for use in FIOM

development. A process for FIOM development is also introduced from which

opportunities for application of computer aid are identified. Finally, an initial prototype

OOMI IDE is presented and an overview of its major components and Graphical User

Interface (GUI) provided.

Chapter VI discusses the opportunities for correlation method application during

FIOM construction. The design of the correlation methodology chosen for the OOMI

IDE implementation is also covered.

Chapter VII covers the translator used under the OOMI to resolve modeling

differences among federation components during their runtime operation. Included in the

discussion is a look at the architectural alternatives for translator implementation as well

as a discussion on translator functionality used when converting exported state and

behavior information from the source model to the equivalent model to be used for

destination system importation.

Chapter VIII revisits the research question presented in Section I.C to evaluate the

OOMI’s success in satisfying the research hypothesis. From this evaluation a conclusion

is reached and areas for future research suggested.

 9

THIS PAGE INTENTIONALLY LEFT BLANK

 10

II. SURVEY OF PREVIOUS WORK ON ACHIEVING
INTEROPERABILITY AMONG INDEPENDENTLY DEVELOPED

SYSTEMS

A. MODELING DIFFERENCES AMONG SYSTEMS

1. Causes of Modeling Differences
Chapter I provided an example of how modeling differences among systems can

impact their interoperability. Before looking at the types of modeling differences that can

arise in independently developed systems, it is important to look at why these differences

occur in the first place. In their research related to database schema integration, Batini et

al. [BLN86] described three major causes of representational heterogeneity:

Different perspectives. The different needs of users, program managers, and design
teams can lead to differences in data representations even when modeling the
same information.

Equivalent constructs. Equivalent models of the same real-world domain can be
created using different combinations of the same basic modeling constructs.

Incompatible design specifications. Different application design specifications can
result in different database schemas for the same real-world domain.

While originally cited in the context of database schema integration, these factors

also apply directly to the types of model heterogeneity found in autonomously developed

systems.

2. Kinds of Modeling Differences
Early work in multidatabase architectures categorized modeling differences found

in heterogeneous database systems. One of the pioneers in early multidatabase efforts,

Gio Wiederhold, defined seven classes of heterogeneity found in autonomously

developed database systems [Wie93]. The kinds of heterogeneity defined for databases

closely relate to the kinds of heterogeneity found in the interoperability context. Using

Wiederhold’s classification as a baseline and reflecting views from Hammer and McLeod

[HM99], Holowczak and Li [HL96], Kim and Seo [KS91], and Kahng and McLeod

[KM98], I describe eight classes of heterogeneity found when trying to achieve

interoperability among a federation of independently developed systems. I have added

heterogeneity of structure to Wiederhold’s list and renamed heterogeneity of

 11

representation to heterogeneity of presentation to eliminate potential overloading in the

use of the term representation. As a result, the following classification of modeling

differences is used in this document:

• Heterogeneity of Hardware and Operating Systems
• Heterogeneity of Organizational Models
• Heterogeneity of Structure
• Heterogeneity of Presentation
• Heterogeneity of Meaning
• Heterogeneity of Scope
• Heterogeneity of Level of Abstraction
• Heterogeneity of Temporal Validity

a. Heterogeneity of Hardware and Operating Systems
Heterogeneity of hardware and operating systems relates to differences in

the hardware and operating system platforms encountered when integrating

autonomously developed systems [HM99, Wie93]. The continual evolution of computer

hardware almost guarantees differences in the platforms used to host the components of a

system federation, particularly if the federation is constructed or modified over a period

of time. Hardware platform differences can result in differences in the physical format of

information on two systems, such as the word size used to represent the primitive

language types, or style of data format (Big Endian versus Little Endian) [Fei99].

Although variety in operating system types appears to be converging to three major

families- Microsoft Windows, Apple Macintosh, or UNIX derivatives- evolution within

these families will ensure that we must continue to contend with operating system

differences.

b. Heterogeneity of Organizational Models
Heterogeneity of organizational models refers to differences in the

conceptual models used by autonomously developed systems. In the context of

multidatabase systems, conceptual model differences relate to dissimilarities in the

database models used, such as network, hierarchical, relational, universal, or object

structured [HM99, Wie93]. In the context of interoperability, heterogeneity of

organizational models can refer to differences in analysis and design principles

 12

employed, such as use of an Object-Oriented Analysis and Design (OOAD) approach

versus a structured analysis approach [Pre01].

c. Heterogeneity of Structure
Variations in the structure of how information is arranged can occur

among systems using the same organizational model. These variations can include

differences in structural composition, possible schema mismatches, and variations due to

the presence of implied information. Differences in structural composition arise when a

real-world entity is modeled as an object on one system and an attribute in another, e.g.,

such as an aircraft route being modeled as an attribute of an aircraft mission object on

one system (as one element of the overall mission) and as a separate entity used for

deconflicting missions in another [HL96]. Schema mismatches can occur when similar

concepts are modeled differently in the schemas of corresponding systems, e.g., a

relationship that is modeled as one-to-one in one schema and one-to-many in another

[HM99]. Finally, structural differences can arise when information that is explicitly

modeled in one system is implicitly defined in another. An example of this kind of

structural heterogeneity is seen when the type of an object is explicitly specified in one

schema and implied from the object’s name in another [KS91].

d. Heterogeneity of Presentation1
Heterogeneity of presentation includes domain mismatch problems, the

use of different units of measure, differences in precision, disparate data types, and

different field lengths or variations in integrity constraints. Domain mismatch problems

occur when the same concept is characterized differently in two separate systems, such as

geographic position measured in latitude and longitude on one system and Military Grid

Reference System (MGRS) on another [HM99]. Systems may also use different units of

measure when quantifying the same object, i.e., yards in one system versus meters in

another for distance measurement. Differences in precision may also occur between

systems, i.e., one system might measure range to a target in hundreds of yards (more

precise) versus another system measuring the same quantity in thousands of yards (less

 13

1 The term presentation is taken from computer networking, where the OSI
presentation layer defines the format of the data to be exchanged between applications
and provides transformations between data formats [Sta00].

precise) [HM99]. Systems may express the same characteristic using disparate data

types: one system represents a telephone number as an integer while another

characterizes it as a character string. Systems may also use different field lengths for

defining the same entity [Wie93]: one system may provide a twenty-character description

of a weapon’s capability while another only allows ten characters for the same

information. Similarly, two systems might place different integrity constraints on the

same value [KS91]. For instance, one system might allow a value for missile

effectiveness in the range of one to twenty nautical miles whereas a different system

might allow effective range values up to thirty nautical miles.

e. Heterogeneity of Meaning
Heterogeneity of meaning results from the imprecise nature of natural

language for characterizing a real-world entity. The use of homonyms, synonyms, and

abbreviations for specifying real-world entity features contribute to this type of

difference. Homonyms refer to the use of the same word to convey different meanings,

such as the use of the word tank to describe both a tracked combat vehicle and a

container for liquid or gaseous material storage [HL96, KM98, Wie93]. Synonyms refer

to the use of different words to describe the same real-world entity or characteristic. For

example, both location and position can be used to refer to the geographic coordinates of

a military unit. The use of abbreviations for depicting real-world entities represents a

special case of the use of synonyms where different abbreviations can be used to

represent the same entity, such as the use of POSIT, PSIT, or POS to refer to the position

of an entity [HM99, KS91].

f. Heterogeneity of Scope
Heterogeneity of Scope results from differences in the information used to

model a real-world entity. These differences can arise from different perspectives on

what attributes a given application needs to capture about the real-world entity being

modeled [Wie93, HL96]. For example, a logistics management system might include

attributes fuelCapacity and ammunitionStatus for a main battle tank, whereas a command

and control system would include attributes weaponRange and defensiveArmor in its tank

model.

 14

g. Heterogeneity of Level of Abstraction
Heterogeneity of level of abstraction results from differences in the level

and degree of aggregation of atomic data elements. For example, one system may store

sales information as a monthly total while another system aggregates the same basic data

as a yearly sum [Wie93, HL96].

h. Heterogeneity of Temporal Validity
Finally, modeling differences may arise from differences in the time used

by two models to observe or record the state of a real-world entity. A difference in the

length of time data remains valid is another source of heterogeneity of temporal validity.

For example, two companies may record their accounting information according to

different fiscal years. These differences in temporal validity are particularly an issue with

military C4I systems [HL96, Wie93].

B. CRITERIA FOR EVALUATING INTEROPERABILITY APPROACHES
The first criterion for evaluating alternative interoperability approaches is a

determination of the types of heterogeneity that may be resolved using the approach. In

addition, I have selected seven other criteria for comparing existing interoperability

approaches. These criteria are listed below and discussed in the following paragraphs.

• Types of heterogeneity addressed
• Capability for application of computer aid for model correlation
• Required knowledge of remote operations
• Required modification to existing system
• Translation methodology
• Capability for application of computer aid for translation development
• Support for federation extensibility
• Information exchange versus joint task execution

1. Types of Heterogeneity Addressed
Section II.A.2 suggested a classification of the modeling differences that must be

resolved between systems in order for them to interoperate. Evaluations of the types of

heterogeneity addressed as well as the degree to which they are successful at resolving

these differences are central to any evaluation of candidate interoperability approaches.

For each candidate interoperability approach, an assessment is provided indicating

 15

whether the approach provides a method for resolving each of the eight types of

heterogeneity completely, partially, or not at all.

2. Capability for Application of Computer Aid for Model Correlation
Creating a federation of autonomously developed heterogeneous systems involves

many real-world entities and potentially numerous models of those entities by the various

systems. Manual correlation of different models of each real-world entity could be a

difficult, time-consuming chore. In integrating database systems, the data correlation

problem poses one of the biggest challenges, with the time required to match

corresponding elements between databases requiring as much as four hours per element

when done manually [LC00]. The correlation problem is no less formidable in the

context of attempting to find correspondences among attributes and operations from

different systems’ models. Therefore, as the number of systems being integrated, and

correspondingly, the number of modeled entities increases, application of computer aid to

the correlation process is warranted. An evaluation of the candidate interoperability

approaches is made indicating whether they provide assistance for correlating different

models of the real-world entities involved in system interoperation. Where provided, the

approach is evaluated to determine the extent of assistance given.

3. Required Knowledge of Remote Operations
The ability for one system to invoke operations implemented on another system is

one of the tenets for declaring that the two systems are interoperable. In some

interoperability approaches a designer must have prior knowledge of the operations

available on a remote system (and possibly modify the calling system to comply with a

server’s interface) in order to take advantage of their functionality. Other approaches

enable the designer to invoke a server’s methods using the client’s representation for the

method name and parameters. Such late binding enables independently developed

systems to take advantage of operations not known at development time. The candidate

interoperability approaches are evaluated to determine whether they enable remote

method calls using a client’s representation for a method’s name and parameters or

whether they require the system designer to satisfy the representation specified by the

server’s interface for these parameters.

 16

4. Required Modification to Existing System
A significant impetus for addressing system interoperability comes from attempts

to interconnect independently developed systems that were never intended to

interoperate. Typically such existing systems were developed without any of the

constructs normally included when forward-fitting a system to support interoperability.

Any modification to existing systems to enable them to interoperate is costly and time-

consuming. Therefore, methodologies that will enable systems to interoperate without

requiring modification to existing software are highly desirable. An evaluation of the

candidate interoperability approaches is made to determine if the approach can be applied

to existing systems without requiring their modification or if approach compliance must

be included in initial system design and development.

5. Translation Methodology
Early interoperability attempts involved the creation of custom point-to-point

interfaces between systems. This pair-wise approach to resolving representational

differences between systems potentially requires n(n-1) translations for a federation of n

systems. Employing a platform-independent intermediate representation during a two-

step conversion requires 2(n) translations, which is a significant improvement over the

pair-wise approach when n is greater than 3. Candidate approaches are evaluated to

determine if translations are defined in terms of a direct source-to-destination conversion

or whether a two-step process utilizing an intermediate representation is employed.

6. Capability for Application of Computer Aid for Translation
Development

Much of the work in creating translations for resolving modeling differences is

repetitive, error prone, and can benefit from computer aid. Two opportunities for

computer aid that immediately come to mind are: 1) assistance in generating translations

between corresponding models, and 2) assistance in reusing commonly used translations.

Considering the mundane and detailed nature of such translations, computer aid is

warranted, particularly when integrating a large number of systems. An evaluation is

made of candidate approaches to determine their capabilities for providing computer

assistance in these or other areas of translation definition.

 17

7. Support for Federation Extensibility
Extensibility of a programming language refers to the capability to enrich the

language by adding new features or modifying existing ones [RRH00]. A program or

design is considered extensible if enhancements can be made to an existing component or

data structure without adversely impacting components or applications dependent on the

original entity. Similarly, a federation of interoperable systems is considered extensible

if additional systems can be added to the federation and changes can be made to the

information and operations exchanged among systems without adversely affecting

interoperation of the original system federation. An approach that supports construction

of an extensible system federation would enable the federation to be implemented in an

incremental fashion, using a previously defined version as a baseline for extension vice

creating a new federation each time the composition of information or operations

exchanged among systems changes. Such extensibility provides the foundation for

federation reuse, enabling previously defined artifacts to be reused in future

interoperability contexts.

An interoperability approach that supports construction of an extensible system

federation is highly desirable in order to enable incremental development and reuse of

federation artifacts. Candidate interoperability approaches are compared to determine the

level of support provided for creating an extensible system federation. An approach is

considered to provide full support for federation extensibility if it enables both the

addition of new systems to the federation and modification to existing information and

operations shared among systems without impacting the interoperation of the original

systems in the federation. Candidate approaches satisfying only one of the above criteria

are considered to provide partial extensibility support while approaches satisfying neither

of these criteria are considered to provide no extensibility support.

8. Information Exchange Versus Joint Task Execution

 18

Pitoura defines interoperability as the capability of systems to exchange

information and to jointly execute tasks [Pit97]. Full interoperability allows systems to

take advantage of functionalities and services that would otherwise not be available or

would have to be implemented. Candidate approaches are evaluated to determine

whether they provide the capability for resolving system heterogeneities only during

information exchange or if their methodologies can also be applied for achieving joint

task execution among systems.

C. APPROACHES FOR ACHIEVING INTEROPERABILITY AMONG
HETEROGENEOUS SYSTEMS

1. Common Object Request Broker Architecture (CORBA)

a. CORBA Overview
The Object Management Group (OMG) is “an open membership, not-for-

profit consortium that produces and maintains computer industry specifications for

interoperable enterprise applications” [OMG01]. The OMG Charter includes the require-

ment to “provide a common architectural framework for object-oriented applications

based on widely available interface specifications [Ros98, p.12].” The OMG achieves its

goals in this area with the establishment of the Object Management Architecture (OMA)

of which the Common Object Request Broker Architecture (CORBA) is a part. The

OMA is a set of standards that provides a common architectural framework on which

applications are built. The OMA, depicted in Figure II-1, consists of:

• An Object Request Broker (ORB) function
• Object services (known as CORBAservices)
• Common facilities (known as CORBAfacilities)
• Domain interfaces
• Application objects [Pop98]

CORBA serves to implement the ORB function specified as part of the OMA.

 19
Figure II-1. OMG’s Object Management Architecture (From [Pop98])

CORBA provides capabilities in three areas to support interoperability:

1) it provides a standard mechanism for defining the interfaces between components; 2) it

specifies a number of standard services such as directory and naming services, persistent

object services, and transaction services that are available to all CORBA compliant

applications; and 3) it provides the mechanisms to allow application components or

separate applications to communicate with each other. These capabilities are provided in

a platform independent and language independent fashion.

• Platform independence: CORBA objects can be used on any platform for which
there is a CORBA ORB implementation.

• Language independence: CORBA objects can be implemented in a number of
programming languages; CORBA objects don’t need to know in which language
other CORBA objects are implemented in order to be able to communicate.
[Ros98]

The initial CORBA standard was released in 1990 as CORBA 1.0. The

CORBA standard continues to evolve, with the latest version, CORBA 2.6, released in

December 2001 [CORBA01].

b. CORBA Architecture Overview
As it’s name implies, CORBA is an object-oriented architecture. This

means that CORBA utilizes features from the Object-Oriented Analysis and Design

(OOAD) paradigm, such as interface inheritance and polymorphism, to achieve the goals

specified in the OMA. This does not mean that CORBA is limited for use with object-

oriented systems. In fact, the CORBA architecture provides components required for

achieving interoperability among both object-oriented and non-object-oriented systems.

The CORBA architecture utilizes the following components in achieving this goal: 1) an

Object Request Broker (ORB), 2) an Interface Definition Language (IDL), 3) the

CORBA Communications Model, 4) the CORBA Object Model, 5) Clients and Servers,

and 6) CORBAservices and CORBAfacilities.

(1) Object Request Broker (ORB). An ORB is a software

component whose purpose is to facilitate communications between objects. When an

application component wants to use a service provided by another component, it must

first obtain a reference for the object providing that service. The ORB provides this

function by resolving requests for object references, thereby enabling application
 20

components to establish connectivity with each other. As part of this capability the ORB

provides the functionality for locating a remote object, given an object reference, and for

the marshaling of parameters and return values to and from remote method invocations.

The CORBA ORB defines the standard for implementing the OMA ORB capability.

(2) Interface Definition Language (IDL). One of the key

contributors toward achieving interoperability between both object-oriented and non-

object-oriented components is the OMG’s Interface Definition Language (IDL). IDL is

used to specify the interface between CORBA objects. IDL consists of both a language

for specifying an object’s interface as well as a translator for mapping the interface

specification to the language and system-specific implementation of that interface. As

implied, IDL is used to define the interface only; implementation of the interface is done

in some other language. Because interfaces defined in IDL can be mapped to virtually

any programming language and IDL serves as the common vernacular that all

applications and components understand, CORBA can be utilized to connect applications

and components implemented in a variety of languages.

(3) CORBA Communications Model. In the CORBA

Communications Model, communication between objects takes place between a client

and a server. A client is an application that uses the services of a CORBA object, i.e. an

application that invokes a method or methods on other objects. Conversely, a server is an

application that creates CORBA objects and makes the services provided by those objects

available to other applications. The CORBA Communications Model is based on the use

of object references (more precisely Interoperable Object References (IORs)) for

identifying objects whose services another component might require. When a component

of an application wants to access a CORBA object it must first obtain an IOR for that

object. Once an IOR is obtained for the object providing the desired service, actual

communications between a client and a server are accomplished using a General Inter-

ORB Protocol (GIOP) compliant protocol. GIOP specifies a standard for communication

between various CORBA ORBs and components. GIOP provides a general specification

for inter-ORB communication; specific protocols such as the Internet Inter-ORB Protocol

 21

(IIOP) for TCP/IP networks provide network specific implementations of the GIOP

specification.

(4) CORBA Object Model. In addition to the communications

model that specifies how communications between objects occur, CORBA features an

object model that describes how objects are represented in the system. Because CORBA

was designed for distributed systems use, its object model possesses several

characteristics tailored for this domain. The first characteristic of CORBA’s object

model is its semitransparent support for object distribution. Thanks to the use of client

stubs, a remote method call looks exactly like a local method call. Thus, object location

is transparent to the application that invokes one of the object’s methods. A second

characteristic of CORBA’s object model is that visibility to objects is provided only

through passing of references to those objects vice passing the object by value. This

methodology grants visibility of an object to another process while retaining ownership

of that object by the process in which it is defined. As a result, execution of the object

methods takes place within the memory and process space of the owning process.

As previously mentioned, communication between objects is

accomplished through the use of an ORB. In achieving its objectives the ORB provides a

number of functions ranging from user authentication, to object activation, to object

persistence. Access to these functions is provided to a CORBA object by means of a

Basic Object Adapter (BOA). Thus, the BOA provides a common set of methods by

which an application can access ORB functionality to accomplish inter-object

communication.

(5) CORBA Clients and Servers. As mentioned previously,

communication between objects in CORBA takes place between a client and a server. To

facilitate this communication and to achieve interoperability between clients and servers

implemented in a variety of programming languages, CORBA presents the concept of

client stubs and server skeletons to connect a language independent IDL interface

specification to the language-specific code that implements the interface. A client stub is

a small piece of code that allows a client component to access a server component.

 22

Correspondingly, a server skeleton is a piece of code that allows a server to accept access

requests from a client.

The client stub provides a dummy implementation for each method

in the interface, thus making a particular CORBA server interface available to the client.

The client stub methods are used to marshal and unmarshal parameters for

communication with the ORB. On the other side of the interoperation, the server

skeleton provides the framework on which the implementation code for a particular

interface is built. For each method of an interface, the IDL compiler generates an empty

method in the server skeleton with the developer providing the implementation for the

server skeleton methods.

(6) CORBAservices and CORBAfacilities. CORBAservices

and CORBAfacilities provide a set of standardized capabilities for use by all applications.

These capabilities include event management, licensing, object persistence, naming,

security, transactions, user interface management, and data interchange, etc. These

capabilities supplement the basic use of IDL for creating component interfaces for a

specified application service, and then for developing clients to exploit the provided

services. In maintaining consistency with the overall CORBA architecture, interface to

these services and facilities is specified using IDL. Implementation of the

CORBAservices and CORBAfacilities interfaces are vendor dependent; all products may

not include a full implementation of these capabilities. [Pop98, Ros98]

c. Evaluation of Interoperability Approach
In this section, I evaluate CORBA against the factors defined in

Section II.B for comparing alternative approaches for achieving interoperability among

heterogeneous systems. The results of this comparison are summarized in Table II-1 and

discussed as follows.

 23

Table II-1. Evaluation of CORBA Support for Resolution of Modeling Differences

Evaluation Criteria CORBA
Types of Heterogeneity

Addressed
Hardware and Operating System;
Organizational Models;
Presentation (Partial)

Capability for Application
of Computer-Aid for
Model Correlation?

Partial. CORBA Naming and Trader Services enable
name or service-based object discovery; however
no assistance provided in correlating different
method parameter representations.

Knowledge of Remote
System Methods Required?

Yes. Server object must be advertised and exposed
through IDL interface; server's object reference
must be known to client; may use naming service
or trader service to locate server application.

Modification to Existing
System Required?

Yes. Must support CORBA IDL; requires client stub
and server skeleton written in IDL.

Translation Methodology? Two-step (Hardware and operating system
heterogeneity resolution only). ORB translates
method parameters to over-the-wire format for
transmission between client and server
applications; however, over-the-wire format not
designed for resolving semantic heterogeneity

Capability for Application
of Computer-Aid for

Translation Development?

Partial. Minimal assistance provided for resolving
low-level hardware and operating system hetero-
geneities using marshal and unmarshal process.

Support for Federation
Extensibility

Partial support. Lack of practical means for extending
attribute or operation parameter types under
OMG IDL limits support for federation
modification.

Information Exchange vs
Joint Task Execution?

Both information exchange and joint task execution.

(1) Types of Heterogeneity Addressed.

Heterogeneity of Hardware and Operating Systems. One of the

responsibilities of CORBA’s Object Request Broker (ORB) is to provide a server method

the input parameters required for its computations and to return the result of this

operation to the calling client. Parameters are defined using any of OMG IDL’s primitive

or constructed types. Primitive types include a number of expected character, number,

and logic types. Constructed types enable the creation of user-defined types by

combining other types. Constructed types include an enumerated type, structure type,

 24

union type, and interface type. CORBA uses a marshaling-unmarshaling process to

transmit required parameters and return values between a client and server application.

The marshaling process converts the parameter from the format used on a client to a

platform-independent over-the-wire format for transmission between components. The

unmarshaling process converts this over-the-wire format to one that is expected by the

server. A similar process is utilized when returning a result to the client application.

Differences in hardware platform and operating system between a client and server

application are resolved using this marshaling-unmarshaling process by converting

between system-specific and platform-independent formats.

Heterogeneity of Organizational Models. Although CORBA

defines an object-oriented architecture, use of OMG IDL for specifying client and server

interfaces enables CORBA to facilitate interoperability between both object-oriented and

non-object-oriented architectures. IDL client stubs can be used to invoke a server’s

methods from either object-oriented or non-object-oriented applications. Similarly, IDL

server skeletons enable server methods to be implemented using either object-oriented or

procedural languages.

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning

and Temporal Validity. Communication between objects in CORBA is accomplished by

one object, a client, invoking a method on another object, the server, which then performs

the requested operation on a set of parameter values provided by the client and (possibly)

returns a result of the operation to the calling client. The information is provided as

parameters for the remote method invocation must conform to that which is expected by

the server method. Both client and server must agree on the number and types of

parameters used to pass information from a client to a server. The client must resolve

any differences in structure, scope, level of abstraction, meaning, and temporal validity

between its application’s objects and the corresponding server object prior to invoking

the server method. CORBA relies on the system designer to resolve these types of

heterogeneity in client and server models.

Heterogeneity of Presentation. Under CORBA the client must

resolve any differences in presentation between its application’s objects and the

 25

corresponding server object prior to invoking the server method. OMG’s Interface

Definition Language (IDL) does provide some help in resolving differences in

presentation. By defining a set of primitive and constructed types and a mapping from

each of these IDL types to the programming language specific types used in applications

implementing a CORBA interface, IDL provides the means for eliminating problems

resulting from the use of disparate data types. However, resolution of higher level

differences such as domain mismatch problems, different units of measure, differences in

precision, and different field lengths or variations in integrity constraints are not provided

by CORBA and must therefore be addressed by the system designer using other means.

(2) Capability for Application of Computer Aid for Model

Correlation. CORBA requires that method parameters be provided in the representation

expected by the server object. It is the responsibility of the system designer to provide

parameters that agree in scope, level of abstraction, meaning, presentation, and temporal

validity with the information expected by the server. CORBA does not provide any

assistance in locating client entities that might correspond to a required server parameter

but differ in one of the above aspects. Similarly, CORBA does not provide any

assistance in locating server methods that might utilize a specified client entity as a

parameter.

(3) Required Knowledge of Remote Operations. Because

information exchange and joint task execution are accomplished in a CORBA application

by client invocation of server method(s), knowledge of the objects and methods available

on the server is required. CORBA’s Naming and Trader Services can provide assistance

in locating a specified server application in which a desired object and its methods are

defined; however the client must have prior knowledge of the existence and name used

for the desired methods to be invoked.

(4) Required Modification to Existing System. A server

application’s methods are invoked by a call from a client system. This call is written

using IDL and conforms to the skeleton created for the server method. If the client

application does not use IDL to invoke a server’s methods, then it must be modified to

make it CORBA compliant.

 26

Implementation of the server’s methods can be done using any

language or organizational model as long as the implementation satisfies the interface

specified by the server’s IDL skeleton. The server skeleton can be implemented as a

wrapper surrounding a legacy method implementation, thereby eliminating the need for

modification of existing server software. However, modification of the client system is

required in order to add an IDL client stub used for server method invocation if it is not

already CORBA compliant.

(5) Translation Methodology. In the CORBA communications

model, communications between applications is facilitated by the use of an Object

Request Broker (ORB). The ORB uses a marshaling-unmarshaling process to translate

method parameters from the source or destination representation to an intermediate over-

the-wire format for transmission across the network between client and server

applications. Thus communications between components is platform independent. This

intermediate representation is primarily utilized to resolve differences caused by

hardware and operating systems, such as differences in word size or byte ordering.

However, resolution of other differences such as domain mismatch problems, use of

different units of measure, differences in precision, and different field lengths or

variations in integrity constraints, are not provided by the over-the-wire format. The

translation methodology for resolving such heterogeneities is not specified by the

CORBA standard.

(6) Capability for Application of Computer Aid for Translation

Development. Once an application component has obtained a reference to an object

whose services it wants to use, it can invoke methods on that object. Generally, those

methods take one or more parameters as input and return other parameters as output. As

mentioned previously, CORBA’s Object Request Broker (ORB) is responsible for

receiving the input parameters from the component that is calling the method and for

translating these parameters into a format that can be transmitted to the called object, via

a process termed marshaling. Then, on the called object side, the ORB unmarshals these

parameters from the transmitted format to a format that the called component

 27

understands. Any heterogeneity in these parameters between the two systems must be

resolved in order for the two systems to interoperate.

For the types of heterogeneity addressed by CORBA, this

marshaling and unmarshaling process is handled completely by the ORB, entirely

transparent to both the client and the server. Thus, resolution of hardware and operating

system differences, as well as other low-level modeling differences, is handled

automatically by the ORB in concert with the use of IDL to specify the interface between

client and server systems. However, other modeling differences are not addressed by

CORBA and are the responsibility of the system designer to resolve. No assistance is

provided by CORBA in constructing these translations.

(7) Support for Federation Extensibility. CORBA effects joint

task execution and information exchange among components of a system federation by

providing the capability for one system, acting as a client, to invoke methods of another

system, performing as the server. Identification of the methods exposed by a server and

invoked by a client is provided by an interface defined using OMG IDL. Adding a new

system to a federation can be accomplished by defining new interfaces for the services

provided by that system. Existing systems would continue to use the existing interfaces

to share tasks and exchange information among themselves. Existing systems would

invoke methods from the newly added interfaces when desiring to interact with a new

system. Conversely, a new system could interact with an existing system by invoking the

method calls provided by the client stubs generated for the existing system interfaces.

Modification to existing interfaces without affecting those already

in place is not as straightforward. Interface modification can be accomplished through

interface extension using inheritance in OMG IDL, using the original interface to govern

the original interaction between systems and the extended interface for the modified

interaction. However, OMG IDL lacks practical versioning support for use in modifying

types used in an interface definition. So although you can modify an interface through

extension by including additional attributes or methods, OMG IDL provides no practical

means for extending attribute or operation parameter types [SV02].

 28

Although OMG IDL supports a versioning pragma that enables

one to include a version number with a type, it does not solve the type modification

problem. First, no version information for data types is passed between applications

during method calls or replies, so the application is unable to determine what version of a

type it is sending or receiving. Second, the CORBA specification does not define how

the version number should be modified when a data type changes and fails to define rules

for determining compatibility between different versions. This is exacerbated by failure

of the CORBA standard interoperability protocol, the General Inter-ORB Protocol

(GIOP), to include type information about the attributes and method parameters

exchanged among components. This prevents applications from receiving types that they

are not expecting or that they do not understand. [SV02]

As an alternative to the use of pragma to provide versioning

support for type extension, one could instead define a new type that reflects the changed

information while leaving the original type unchanged. However, modifying the

interface to include both the old type and the new type definitions would require

recompilation and redeployment of any applications that utilize the interface. Interface

recompilation and redeployment could be avoided by the use of inheritance, defining an

interface containing the new type definition as an extension to the interface containing

the original type definition. However, because CORBA does not allow operation

overloading, operations defined on the type in the new interface must be renamed to

prevent naming collisions with the interface being extended. As additional type

modifications are required, new interfaces with all-new operations to handle the new type

must be derived. This approach quickly becomes unwieldy as the number of type

modifications grows. [SV02]

Other approaches to versioning under CORBA have similar

limitations. As a result, CORBA is considered to provide partial support for federation

extensibility.

(8) Information Exchange versus Joint Task Execution.

CORBA addresses both aspects of interoperability- information exchange and joint task

execution. As discussed in Section II.C.1.b, CORBA’s employment of IDL, together

 29

with its communications and object model, enables one application to invoke methods

defined for another. In addition to enabling joint execution of methods between two

applications, this mechanism can also be utilized to exchange information between these

applications. Information exchange between a client and server can be accomplished by

the client invoking a getItemFromSender method on the server with the client supplying

the values being transmitted to the sender as parameters to the method call.

2. COM, DCOM, COM+
Introduced by Microsoft in 1993, the Component Object Model (COM) is a

software architecture that enables applications and systems to be built from binary

components supplied by different software vendors. COM and its successor architectures

Distributed COM (DCOM) and COM+ are competing technologies to the Object

Management Group’s (OMG’s) Common Object Request Broker Architecture (CORBA).

COM and its successors provide the fundamental object creation and management

facilities required to enable components to interact.

COM’s original function was to provide a general-purpose mechanism for

component integration on Windows platforms. DCOM added support for distributed

components when introduced on Windows NT in 1996 and Windows 95 in 1997. COM+

provided a unification of COM, DCOM and Microsoft Transaction Server when

introduced with Windows 2000 in the spring of 2000.

a. Component Object Model (COM)
COM defines a “language-independent, object-oriented, extensible, binary

interoperability standard that allows software components to communicate with each

other [Kol00, p. 6].” Based on a client-server model, COM enables clients to invoke

services provided by COM-compliant components, irrespective of the programming

language the components are written in.

A key feature of COM is that it provides a standard that allows binary

software components, supplied by different software vendors, to connect and

communicate with each other. This contrasts with CORBA’s approach of enabling

interoperability at the source code level. Some of the key components of the COM

standard which support interoperability among binary software components include:

 30

• A provision for providing access to a software component via a strongly-typed
grouping of functions termed an interface.

• A client-server based approach that makes the location of a function being
requested by an application transparent to the calling client.

• An interface definition language for specifying and describing interfaces and
objects.

• A binary standard for function calling between components.
• A base interface providing:

− A way for components to dynamically discover the interfaces implemented by
other components.

− Reference counting to allow components to track their own lifetime and delete
themselves when appropriate.

• A mechanism for uniquely identifying components and their interfaces.
• A means for object and interface reusability.
• A mechanism for identifying components and interfaces that facilitates system

extension. [Kol00]

In COM, an interface is a collection of semantically related operations,

called methods, which express a single functionality. An interface provides the binary

standard through which clients and component objects communicate. These methods are

defined in a piece of compiled code, called a component object (or just object) in COM,

which provides some service to the rest of the system. A generalization of one or more

interfaces that express related behavior is termed a class. Access to an object’s methods

is provided by means of an interface pointer that references the interface and is further

described below. An interface is not a component object. A component object

implements an interface and a component object must be instantiated in order for an

interface to exist. Component objects can implement multiple interfaces. Interfaces are

immutable, meaning that once defined, an interface cannot be changed. If access to

additional methods offered by an object is desired, then a new interface must be defined.

One or more COM classes are packaged into a server. A server can create

object instances of multiple classes, where each COM object runs inside of the server.

Servers can be either in-process servers, where they are loaded into the same address

space as the client, or out-of-process servers that run in another process on the same

machine as the client (local) or in another process on a remote machine (remote).

Remote servers are accessed using the distributed successor to COM (DCOM) that will

be addressed in Section II.C.2.b. A client is any piece of code that makes use of another
 31

object’s services by calling methods of that object’s interfaces. An important aspect of

COM is that client applications do not need to know how server objects are packaged or

whether the server is in-process or out-of-process. The client uses the same method to

access the server in either case.

All COM objects and their interfaces are specified using the Microsoft

Interface Definition Language (MIDL). MIDL is an object-oriented extension of the

Interface Definition Language (IDL) defined by the Open Software Foundation (OSF) for

the Distributed Computing Environment (DCE). OSF IDL was originally developed for

describing the interfaces, operations, and attributes for remote procedure calls (RPC) in

traditional client-server applications. MIDL enables programming language independent

specification of a component’s interface.

COM’s binary standard specifies the way that server functions must be

called. A binary structure for the interface between a client and a server is defined that

enables clients to utilize a server’s services regardless of differences in the

implementation environments of the client and server programs and how objects and their

interfaces look in memory. The binary standard specifies that any interface must follow a

standard memory layout. By calling the interface, a client program can obtain a pointer

to a table that contains an entry for each function available via that interface. This table,

called a virtual function table (vtable), is an array of pointers to the object’s

implementations of the interface methods. A client accesses the vtable through an

interface pointer. Therefore, client access to a server’s method implementation is by

means of double indirection- the client uses an interface pointer to access the vtable that

in turn contains the pointer(s) to the server method implementation(s). Figure II-2

illustrates the binary structure of a COM object and the double indirection used to access

a server’s method implementations.

COM defines a base interface, IUnknown, from which all other interfaces

are derived. IUnknown includes methods QueryInterface, AddRef, and Release to

provide essential functionality required by all interfaces. QueryInterface enables a client

to dynamically discover (at runtime) whether a component object supports a specified

interface or not. An application will request a pointer to the interface that implements a

 32

desired function via a call to the QueryInterface method of a component. QueryInterface

will return the appropriate interface pointer and a success code if it supports that interface

or an error value if it does not. Methods AddRef and Release are used to implement a

manual reference counting mechanism in COM that an object uses to control its own

lifetime. When a client accesses an object it uses AddRef to increase the reference

counter for that object and Release to decrease the reference count when it is done with

the object. When the reference count is reduced to zero, the object knows that its services

are no longer needed and it therefore can delete itself.

Figure II-2. Binary Structure of a COM Object (From [Kol00])

COM uses a number of globally unique identifiers in order to ensure that

COM components connect to the correct component, object, or interface. Each interface

is assigned a globally unique identifier (GUID) called the interface ID (IID) at

development time. In addition, each COM class is assigned a class ID (CLSID) for the

same purpose. Developers create their own GUIDs when they develop component

objects and custom interfaces through the use of the CoCreateGUID function included as

part of the COM Application Programming Interface (API). These GUIDs are embedded

in the component binary and are used to dynamically ensure that no incorrect connections

are made between components at bind time.

 33

One of the primary advantages of any object model is that objects and

other components can be reused and extended for use in other applications. COM

enables reuse of a component object’s interface through the use of interface inheritance.

COM allows only single interface inheritance, vice multiple interface inheritance, and

does not support selective inheritance where an interface could selectively choose the

methods it wants to inherit from another interface.

However, interface inheritance does not mean code reuse by inheritance,

since no implementations are associated with an interface. COM does provide two other

reusability mechanisms for object-level reuse. These mechanisms are

containment/delegation and aggregation. In containment/delegation, one object, the

outer object, contains another object, the inner object, with the outer object acting as a

client to the inner object. In this way the outer object uses the inner object to implement

some or possibly all of its functionality, thereby enabling the inner object to be reused by

many other objects. Aggregation, on the other hand, exposes the interfaces from the

inner object as if they were implemented on the outer object itself. Aggregation avoids

the extra implementation overhead required by the outer object to delegate

implementation of its external interfaces to a contained inner object.

The ability to modify and extend the capability of a system is generally

handled via its versioning mechanisms. Versioning mechanisms allow you to add new

features to a component, creating a new version in the process, without affecting existing

clients of that component. Versioning in COM is implemented using interfaces and

IUnknown’s QueryInterface method.

Updating a software module is usually done to add new functionality or to

improve existing functionality. In COM, since interfaces are immutable, new

functionality is added to a component object by adding support for new interfaces. Since

the existing interfaces don't change, components that rely on those existing interfaces are

not impacted by the addition of new interfaces. Clients that know about the new

functionality can use these newly created interfaces to access this functionality. The

client can use IUnknown’s QueryInterface method to evaluate the capabilities of a

component object at runtime and when new features become available access those

features through the newly created interface corresponding to those features. The

procedure for improving existing functionality is even simpler. Since the syntax and

semantics of an interface remain constant, the implementation of the interface can be

 34

changed at any time, without affecting other developers’ components that rely on the

interface. [WK94]

COM maintains a Component Object Library to facilitate client access to

server methods. When an application creates a component object, it adds the CLSID of

the component object class to the Component Object Library. The CLSID is used by the

Component Object Library to locate the associated server code in the registration

database. COM then either launches the server code directly (if it is an executable) or

loads the server code and creates an instance of the component object and returns a

pointer to the requested interface back to the calling application (if it is a DLL). In either

case, the calling application will use the returned interface pointer to communicate with

the newly created component object. [WK94]

b. Distributed Component Object Model (DCOM)
The Distributed Component Object Model (DCOM) extends the

Component Object Model (COM) to support communications among objects over a

network. Whereas COM was limited to communications between processes running on

the same machine, DCOM extends that capability to other machines operating across a

network. DCOM uses the same methodology to communicate between networks that

COM uses to facilitate inter-process communication on the same machine.

As can be seen in Figure II-3, DCOM adds a communications mechanism

between client and server objects as well as a layer of middleware to connect the client

and server objects to the communications mechanism. The communications mechanism

is based on Microsoft’s Object Remote Procedure Call (ORPC) standard. ORPC

specifies how references to objects are represented, communicated, and maintained, and

how calls to objects are made across the network. As shown in Figure II-3, a client and a

server are connected via an underlying RPC channel. This RPC channel consists of

either a local inter-process communication mechanism for client and server objects

residing within the same machine, or a network protocol for client and the object residing

on different machines.

 35

Figure II-3. DCOM Overall Architecture (From [Kol00])

Whenever a client and a server are on different processes on the same

machine, or on different machines, DCOM uses the concept of stub and proxy objects to

support object location transparency. The proxy object is a piece of middleware that sits

between the client and the RPC channel and acts as a surrogate for the server object. It is

used to package the client’s method call parameters into a message buffer for

transmission across the RPC channel. The method call message is received on the server

side by a stub object that unpacks the received packets and forwards the client request to

the appropriate object implementation on the server. If the component object being

called is in-process, the call reaches the object directly using existing facilities provided

by COM. Figure II-4 illustrates MIDL’s use of proxy and stub constructs for achieving

programming language transparency.

The Service Control Manager (SCM) is an additional piece of middleware

that is used to initiate the connection between a client and a server. The SCM

accomplishes this by keeping a database of class information based on registry data.

Upon receipt of a client request, the local SCM looks up the desired method’s object class

ID (CLSID) in its registry and then takes the appropriate actions to activate the remote

server. This is done by the local SCM contacting the SCM on the remote machine where

the desired object resides. The remote SCM locates and launches the server and returns

an RPC connection between the client and server. [DCOM96, Kol00]

 36

Figure II-4. Use of MIDL Proxy and Stub Constructs for Achieving Programming

Language Transparency (From [Kol00])

c. Component Object Model Plus (COM+)
As mentioned previously, COM+ provides a unification of COM, DCOM

and Microsoft Transaction Server capabilities. While adding a number of new features

and services, COM+’s primary contribution regarding data interoperability is in the

automation of many of the resource management tasks that developers previously had to

take care of. Most notable of these tasks are:

(1) Hiding reference counting from developers. With COM

and DCOM, developers were responsible for managing the lifetime of components using

IUnknown's AddRef and Release methods. With COM+, reference counting is handled

automatically.

(2) Largely hiding the Interface Definition Language (IDL)

from developers. Rather than having to define object interfaces in terms of Microsoft’s

IDL (MIDL), COM+ enables developers to define these interfaces in terms of the

programming language they are currently using. This greatly simplifies interface

development and potentially minimizes the amount of changes required to bring legacy

code into COM+ compliance.

(3) Provides a common set of types supported by all COM+

objects. Differences in the data types supported by different programming languages are

problematic when attempting to create an interoperable system from a number of

 37

heterogeneous components. COM+ provides a set of common types, shown in Figure

II-5, by which components can agree for defining shared class data, method parameters,

and return values. [Kol00]

Figure II-5. Data Types Supported by COM+ (From [Kir97])

While not directly related to achieving data interoperability, other

enhancements added by COM+, such as transaction support, load balancing, object

pooling, queued components, and advanced security features improve its capability for

component based system development [Kol00].

d. Evaluation of Interoperability Approach
In evaluating COM, DCOM, and COM+ against the criteria used to

compare interoperability approaches, the three technologies are assessed as one as they

represent the evolution of the same concept. These technologies will be referred to

 38

collectively as COM+, except when discussing capabilities related to a specific

technology in the COM+ family evolution. A summary of this assessment is contained in

Table II-2 and discussed in the following paragraphs.

Table II-2. Evaluation of COM, DCOM, and COM+ Support for Resolution of
Modeling Differences

Evaluation Criteria COM, DCOM, and COM+
Types of Heterogeneity

Addressed
Hardware and Operating System (partial);
Organizational Models;
Presentation (Partial)

Capability for Application
of Computer-Aid for
Model Correlation?

No.

Knowledge of Remote
System Methods Required?

Yes. Method name, and type and depiction of
included parameters required.

Modification to Existing
System Required?

Yes. Minimal; MIDL not required by COM+,
however use of client proxy still required.

Translation Methodology? Not specified. Marshal and unmarshal routines use
standard transmission format; methodology for
resolution of other types of heterogeneity not
specified.

Capability for Application
of Computer-Aid for

Translation Development?

Partial. Minimal assistance provided for resolving
low-level hardware and operating system hetero-
geneities using marshal and unmarshal process.

Support for Federation
Extensibility

Partial support. Lack of practical means for extending
attribute or operation parameter types under
MIDL limits support for federation modification.

Information Exchange vs.
Joint Task Execution?

Both information exchange and joint task execution.

(1) Types of Heterogeneity Addressed.

Heterogeneity of Hardware and Operating Systems. The COM+

suite is considered partially successful at resolving differences in hardware and operating

systems between components. Use of the Microsoft Interface Definition Language

(MIDL) to specify and describe all COM objects and their interfaces, together with

definition of a common set of types supported by all COM+ objects, forms the core of the

COM+ family’s solution for resolving hardware and operating system heterogeneity.

 39

Coupling of the MIDL server method calls with their binary implementation through the

use virtual function tables (vtables) serves to resolve differences in the implementation

environment of the client and server programs. Mechanisms for converting between

system-specific type representations and the COM+ common type definition contributes

further to the resolution of hardware and operating system differences. However,

resolution of hardware and operating system heterogeneity is only considered partially

successful due to the fact that the COM+ family is primarily designed to be supported on

Windows operating systems. Microsoft has enlisted Software AG to provide

COM/DCOM implementations on platforms other than Windows; however it is not

certain that the full range of capabilities will be available for these other operating

systems.

Heterogeneity of Organizational Models. The specification of a

binary standard for defining the interface between a client and server enables the COM+

family to facilitate interoperability between both object-oriented and non-object-oriented

architectures. COM’s binary standard stipulates the mechanism for calling interface

functions and serves to hide differences associated with heterogeneity of organizational

models or programming languages used for function implementation. Functions are

accessed via an interface containing a pointer to a vtable that holds a pointer to the

function implementation. Thus, any programming language that can utilize a structure of

pointers to explicitly or implicitly call functions can be used to write COM objects that

can interoperate with other objects written to the binary standard regardless of

organizational model used in the function implementation.

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning,

and Temporal Validity. Communication between objects in DCOM is accomplished by

one object, a client, invoking a method on another object, the server, which then performs

the requested operation on a set of parameter values provided by the client and (possibly)

returns a result of the operation to the calling client. Communication between clients and

servers on different machines is supported by DCOM using the concept of client proxy

and server stub objects. The proxy and stub objects support the exchange of function

calls, parameter values, and return values through a set of marshaling and unmarshaling

 40

operations. During marshaling, the client proxy converts function parameters from the

client representation to a standard format for transmission across process boundaries.

Unmarshaling performs the reverse operation, converting from the standard transmission

format to the server representation. Return values are marshaled by the server and

unmarshaled by the client in the same manner. In order to be able to marshal and

unmarshal parameters correctly, the client needs to know the exact method signature,

including all data types in the parameter list, required by the server. Thus heterogeneity

in structure, scope, level of abstraction, meaning, and temporal validity must be resolved

by the client prior to invocation of the server method using MIDL. COM/DCOM rely on

the system designer to resolve these types of heterogeneity in client and server object

representations.

Heterogeneity of Presentation. The resolution of differences in

presentation between systems is largely unresolved by the COM+ family. COM+ does

addresses the problem regarding differences in data types used in different languages by

defining a common set of types that are supported by all COM+ objects. However, the

issue is not completely resolved since the developer may need to provide some sort of

mapping between its native type definitions and those used by COM+ in order to address

problems such as differences in field length and floating-point number precision [Kir97].

In addition, resolution of domain-mismatch problems, differences in units of measure,

and variations in field length and integrity constraints are not addressed by COM+ and

must therefore be handled by the system designer.

(2) Capability for Application of Computer Aid for Model

Correlation. The COM+ family does not allow for differences in the modeling of method

signatures between systems. It requires that the method name and parameters be

provided in the representation expected by a server object. A client desiring to utilize a

server’s methods must supply the method name and parameters expected by the server.

If the scope, level of abstraction, meaning, presentation, or temporal validity of

information expected by the server method invocation differs from that available on a

client implementation, it is the responsibility of the system designer to perform any

necessary conversions between the client and server models. Since the COM+ family

 41

does not allow modeling differences between method signatures, it does not provide any

capability for correlation of client and server models of these signatures.

(3) Required Knowledge of Remote Operations. The COM+

family requires partial knowledge of the methods available for execution on a remote

server. Whereas details of the method name and the type and representation of required

parameters are required by a client application in order to invoke a server method, actual

location of the server method is not required. Through its QueryInterface method in the

IUnknown interface, COM provides a mechanism that enables clients to dynamically

discover if a particular interface is supported by a component object. However, the client

must have prior knowledge of the existence and name used for the desired methods in

order to utilize QueryInterface to locate the specified method.

(4) Required Modification to Existing System. COM’s binary

standard enables objects written in different programming languages or to different

organizational models to interoperate. As long as the programming language can reduce

language structures to the required binary structure, then compliant objects can be used to

implement a server’s method calls without modification to the implementing object.

However, client invocation of the desired server method is implemented using a method

call written in MIDL. Therefore, modification to the client application will be necessary

if its method calls were not written to be COM compliant.

COM+ eliminates the requirement for developers to implement

object interfaces using MIDL, enabling them to specify the interface using whatever

programming language is being used on the particular system. This minimizes the

required modification to the existing system, but does not completely eliminate it, as a

client proxy in the client’s native language must still be provided.

(5) Translation Methodology. In DCOM, the marshaling and

unmarshaling methods used by client proxy and server stub objects utilize a “flat”

standard format for transmission across process boundaries. Although this standard

format can handle arbitrarily complex parameter and return values, including pointers to

arrays and structures or other user defined types, it primarily serves to provide the means

for managing differences in word size and byte order between systems. Aside from

 42

enabling resolution of these hardware differences between systems, this intermediate

representation does not resolve other differences in presentation such as domain

mismatch problems, different units of measure, differences in precision, and different

field lengths or variations in integrity constraints. Use of a point-to-point or two-step

translation methodology for resolving such heterogeneities is not specified for the COM+

family.

(6) Capability for Application of Computer Aid for Translation

Development. As discussed earlier, client proxy and server stub objects handle

marshaling and unmarshaling of method parameters. These objects automatically handle

differences due to hardware heterogeneity, such as word size and byte ordering.

However, other modeling differences are not addressed by COM and are the

responsibility of the system designer to resolve. The COM+ family does not provide any

support for application of computer aid to the development of such translation

requirements.

(7) Support for Federation Extensibility. Similar to CORBA,

the COM+ family utilizes a client-server model for joint execution of tasks and exchange

of information among components of a federation. Identification of the methods exposed

by a server and invoked by a client is likewise provided by an interface defining the

system interoperation. Adding a new system to the federation is accomplished by adding

new interfaces defining the services provided by that system. Existing interfaces are used

to share tasks and exchange information among existing systems, while the new

interfaces are utilized for interactions with the new system. Existing systems

functionality is invoked by the new system using the method calls provided by the client

stubs generated for the existing system interfaces.

Because COM interfaces are immutable, modification of the

methods or data types used to define the information and tasks shared among systems is

accomplished using interface inheritance. Although COM interfaces are immutable,

objects in COM can have more than one interface. Adding new functionality to a

component or modifying its existing capability is done by creating a new interface as an

extension to the old one. The new interface will include the unchanged methods from the

 43

original as well as any new or modified methods and will receive a distinct interface

identifier distinguishing it from the original. Components relying on existing interfaces

will continue to use them, whereas components requiring the new functionality will use

the new interface.

However, just as was seen in CORBA with OMG IDL, MIDL also

does not allow operation overloading. Therefore, support for type modification is

similarly limited in COM+. Operations defined on a modified type in the new interface

must be renamed to prevent naming collisions with the interface being extended. As

additional type modifications are required, new interfaces with all new operations to

handle the new type must be derived. This approach quickly becomes unwieldy as the

number of type modifications grows. Therefore, the COM+ family is considered to only

provide partial support for federation extensibility.

(8) Information Exchange versus Joint Task Execution. The

COM+ family is primarily directed at enabling applications to share method invocation.

However, as was seen with CORBA in Section II.C.1.c(7), information exchange can be

accomplished by a client invoking a getItemFromSender method on the server, supplying

the values to be transmitted to the sender as parameters to the method call.

3. Java 2 Enterprise Edition (J2EE)

a. J2EE Overview
The Java 2 Enterprise Edition (J2EE) specification “defines a Java

platform with features aimed at enterprise level computing environments” [Ber00, p.

741]. It extends the Standard Edition specification primarily in the areas of security,

deployment and interoperability. In support of interoperability it provides a number of

distributed computing protocols and APIs that can be used in creating a system

federation. Berg identifies four cornerstones for creating a distributed application:

1. Data resources
2. Naming and lookup of resources and services
3. Remote invocation or messaging
4. Transaction control [Ber00]

J2EE provides a number of APIs to address requirements for distributed computing in

each of these areas:

 44

(1) Data resources. Access to data is at the center of most

multiuser computing applications. Some type of database is used to store the state of the

system for just about any large system application. Standards such as SQL have provided

software developers with the tools necessary to develop an application data model that is

independent of the specific database used. The Java Data Base Connectivity (JDBC) API

defines a standard way of accessing a relational database from a Java application,

regardless of where the application and database are located. [Ber00]

The JDBC API wraps SQL and query responses in an object layer.

It is based on Microsoft’s API for database drivers, Open Database Connectivity

(ODBC); therefore there is a great deal of conformance between JDBC and ODBC. In

fact, Sun supplies a bridge that enables an application to access any data source that has

an ODBC driver using the JDBC API.

A recent industry move has been toward the use of the eXtensible

Markup Language (XML) for capturing data used in applications. J2EE provides three

principal technologies for interacting with data stored using XML. The Document Object

Model (DOM) defines an object graph structure for representing XML documents

[ABK00]. Java DOM implementations include functionality for traversing and

manipulating the contents of an XML document using its graph structure form. The

Simple API for XML (SAX) is a set of Java packages that define an XML parser

interface. SAX enables applications to process the contents of an XML document

[ABK00]. The Java API for XML Processing (JAXP) uses DOM, SAX, and XSLT to

support XML document processing. JAXP provides an implementation independent

XML processing mechanism to parse and transform XML documents [JAXP02].

(2) Naming and lookup of resources and services. The Java

Naming and Directory Interface (JNDI) provides an API for accessing name and

directory services. In addition to providing a generic interface for accessing name and

directory services in a uniform and product independent way, JNDI can also be used as

an interface to object name services such as CORBA COS Naming.

There are two primary ways to obtain an object using JNDI: 1) an

application can ask for the object by name using the lookup() method; and 2) it can

 45

search for the object based on attributes it possesses. The lookup() method is intended

primarily for name services, whereas attribute search is intended for retrieving directory

services and other attribute and hierarchical types of name services. JNDI also supports

referrals. A referral is a reply from a server directing a client to another server when it

cannot locate an object or entry by itself but knows where it can be found. Referrals can

be followed automatically without a client application having to explicitly handle a

returned referral.

(3) Remote invocation or messaging. J2EE provides the

capability for remote method invocation or message exchange using one or more of the

following technologies. The capability for remote method invocation is provided by

either Java Remote Method Invocation (RMI) or CORBA. The capability for message

exchange among applications is provided by Java Message Service (JMS).

Remote Method Invocation (RMI). Java’s built-in distributed

object protocol, RMI, enables you to define objects that can be called remotely from

other applications in a network. This capability provides the foundation for joint task

execution, and consequently information exchange, among systems in a federation. RMI

handles the details of packaging method parameters, sending them across a network to a

remote object, unpackaging them at the destination, invoking the correct method using

the passed parameters, and returning any method result back to the caller. The process of

packaging parameters for transmission to a remote object is termed “marshaling” under

RMI, whereas the reverse procedure of unpackaging the parameters at the destination is

termed “unmarshaling.”

RMI provides an analogous capability to that presented by

CORBA, but does not include all of CORBA’s power. RMI uses a simpler, standardized

model for establishing and managing connections between a client and server.

RMI uses Java’s serialization API for packaging and unpackaging

data during the marshaling and unmarshaling process, respectively. Serialization is used

to convert an object’s state into a machine-independent encoded form that is transmitted

between applications or systems. This encoded form is then reconstructed into an

 46

equivalent object at the destination end. Any machine-specific representational

differences are resolved through the marshaling-unmarshaling process.

How does RMI work? First, the system designer will define a Java

interface for services that are to be made available outside a defining application. The

resultant interface is then implemented with a server object class providing the required

service functionality. The server object class is then compiled using an RMI compiler

that generates “stub” and “skeleton” classes that provide the required linkage between

remote clients and the server object.

When a client makes a remote call it is actually calling a method

on the stub class that is deployed with the client code. This stub serves as a proxy for the

server object, marshaling the input parameters for the server object method call onto an

RMI stream and sending them to the server using an RMI communications protocol. At

the server end, the skeleton code receives the RMI stream, unmarshals its contents, and

invokes the method identified in the stream. Any returned value provided by the invoked

method is marshaled by the server skeleton and returned to the client stub as an RMI

stream. The client stub then unmarshals the returned value, creating a new Java object

that is returned to the calling routing on the client side.

CORBA. Whereas Java applications can be made to interoperate

with other Java applications using Java RMI, they can also interoperate with non-Java

applications, and Java applications as well, using CORBA’s ORB. As stated by Berg

“Java and CORBA are extremely synergistic. … Java solves the problem of code

distribution; CORBA solves the problem of intercommunication between distributed

components. … combined, they provide an architecture for creating distributed

applications that can deploy themselves and run in a cooperative fashion across a

network” [Ber00, p.504].

RMI’s native protocol for communications between a client and

server is called Java Remote Method Protocol (JRMP). Alternatively, RMI can use

CORBA IIOP to effect the marshaling and unmarshaling of method parameters between

applications. The use of the IIOP communication protocol from within RMI is often

referred to as “RMI-over-IIOP.” This capability enables you to utilize CORBA for

 47

application interconnection using a programming model that mimics RMI. Using IIOP

from RMI also enables you to capitalize on some of the additional features provided by

IIOP such as transaction context propagation.

Java Message Service (JMS). With Java RMI or CORBA, a

designer can create a system federation capable of providing joint execution of tasks and

information exchange among systems. As an alternative to the remote invocation

protocol provided by Java RMI, JMS provides a messaging service that can be used for

information exchange among federation systems. JMS provides both a point-to-point and

publish-subscribe messaging model. In the point-to-point model applications send and

extract messages from named queues. In the publish-subscribe model, applications

publish messages to named “topic” channels and listen asynchronously for arriving

messages on these topics.

(4) Transaction control. Integration of separate applications

can be done using a messaging approach or a transactional approach. In a messaging

approach, the primary concern is with getting data from one system to another. A

transactional approach provides for the aggregation of separate operations, possibly

across different data resources, into a single transaction that preserves atomicity, data

integrity, data isolation, and recoverability upon failure.

A transaction manager is “a component that coordinates the

completion of transactions across multiple data resources” [Ber00, p.573]. The Java

Transaction API (JTA) provides a standard Java interface that transaction managers can

use to perform this coordination. When used with a transaction manager, JTA provides a

transaction approach to system integration. This enables an application to create a single

transaction for manipulating multiple data resources, eliminating the need for

coordinating separate but related operations.

In addition to providing the JTA for managing data resource

transactions, J2EE also includes the Java Transaction Service (JTS), which defines a

standard Java API for interaction with CORBA’s COS Transactions service (OTS).

Many of the most flexible application servers are ORB-based and use OTS for their

 48

transaction management implementations. JTS enables the designer to include those

servers in their transaction-based architecture.

b. Evaluation of Interoperability Approach
J2EE’s interoperability capabilities are evaluated using the criteria

specified in Section II.B. The results of the evaluation are summarized in Table II-3 and

discussed in the following paragraphs.

Table II-3. Evaluation of J2EE Support for Resolution of Modeling Differences

Evaluation Criteria Java 2 Enterprise Edition (J2EE)
Types of Heterogeneity

Addressed
Hardware and Operating System (as long as there is a

Java Virtual Machine implementation for the
platform);

Presentation (Partial. Since both client and server
applications must be written in Java, common set
of types available for parameter definition);

Capability for Application
of Computer-Aid for
Model Correlation?

No. No assistance provided for correlating different
models of the real-world entities used to capture
an application’s problem environment.

Knowledge of Remote
System Methods Required?

Yes. Client must know server’s name or identifying
attributes in order to acquire server object
reference for remote method invocation.

Modification to Existing
System Required?

Yes. Both client and server applications must be
written in Java.

Translation Methodology? Two-step (Hardware and operating system
heterogeneity resolution only). Communication
between objects done using Java Object
Serialization; however, does not support
semantic heterogeneity resolution.

Capability for Application
of Computer-Aid for

Translation Development?

Partial. Outside of platform independence provided by
Java Virtual Machine, no assistance provided in
resolving other types of heterogeneity.

Support for Federation
Extensibility

Full support provided for both federation extension
and modification.

Information Exchange vs.
Joint Task Execution?

Both information exchange and joint task execution.

(1) Types of Heterogeneity Addressed.

Heterogeneity of Hardware and Operating Systems. Java RMI

uses Java Object Serialization for passing an object from one application’s address space

 49

to another’s. Serialization converts the object from the representation used by the source

system to an intermediate platform independent representation in a process called

marshaling. An unmarshaling process is used to reverse this procedure on the

destination system, converting the object from the intermediate representation to the form

used by the destination system. Thus the serialization process resolves representational

differences between the source and destination system. Serialization is limited to

resolving differences related to heterogeneities of hardware and operating system;

resolution of other heterogeneities is left to the interoperability engineer. Serialization

also requires a Java Virtual Machine (JVM) implementation for the source and

destination systems.

Heterogeneity of Presentation. Since both client and server

applications must be written in Java, a common set of types is available for parameter

definition. Thus, presentation differences related to the use of different data types can be

eliminated, assuming the designers of the interconnected systems elected to use common

types in constructing the member values and methods for corresponding classes. Other

causes of heterogeneity of presentation such as domain mismatch problems, the use of

different units of measure, differences in precision, and different field lengths or

variations in integrity constraints must be resolved by the interoperability engineer.

Heterogeneity of Organizational Models, Structure, Meaning,

Scope, Level of Abstraction, and Temporal Validity. J2EE’s distributed computing

protocols and APIs do not provide any mechanisms for addressing the remaining types of

heterogeneity- heterogeneity of organizational models, structure, meaning, scope, level of

abstraction, or temporal validity. The interoperability engineer must provide his own

means for resolving such heterogeneities.

(2) Capability for Application of Computer Aid for Model

Correlation. The crux of the distributed computing capability provided by J2EE is the

capability for an application to invoke methods of an object residing in a different address

space. In providing this capability, the J2EE designers did not take into consideration

potential heterogeneity in the application’s model of the problem environment. It was

expected that a client desiring to invoke a method from another application would

 50

conform to the model used by the other application for defining the object’s methods and

parameters. Therefore, J2EE provides no assistance for correlating the possibly different

models of the real-world entities used to capture an application’s problem environment.

(3) Required Knowledge of Remote Operations. In order for a

client to access the methods of a server, it must obtain an object reference to the Java

RMI server object. This object reference can be obtained using the JNDI; however, JNDI

requires either the name of the server object, or a set of attributes that can be used to

determine the server object reference. JNDI provides no assistance in resolving potential

heterogeneities between a client’s model of the name and attribute used to identify a

desired service and the name and attributes actually used by a server implementation.

The client must know the actual name used by the server object or the attributes it uses to

describe itself in order to obtain the server’s object reference. Therefore, J2EE does

require a system to have prior knowledge of a remote system’s operations in order to

utilize its capability.

(4) Required Modification to Existing System. If a client

implementation used a different model for a server’s name, attributes, or methods than

that used by the server, then the client must be modified to comply with that expected by

the server implementation. In addition, as the capabilities provided by J2EE can only be

used with applications written in Java, if either client or server is written in another

programming language then they must be modified to utilize J2EE’s distributed

computing capability.

(5) Translation Methodology. Java RMI uses Java Object

Serialization to pass objects between systems. A serialized object is a machine-

independent encoded form of the parameters and return values passed between a client

and a server. The serialization mechanism implements a two-step translation

methodology whereby an object’s state is encoded into a machine-independent form at

the source and then converted to the target system’s representation at the destination.

However, Java Object Serialization is limited to resolving representational differences

caused by heterogeneity of hardware and operating systems only. Other types of

heterogeneity are unresolved by the serialization process.

 51

(6) Capability for Application of Computer Aid for Translation

Development. Heterogeneities of hardware and operating systems are resolved under

J2EE through the Java Virtual Machine and the use of Java Object Serialization for

passing objects between applications. While these capabilities provide application

platform independence, support for resolution of other modeling differences such as

heterogeneities of organizational models, structure, presentation, meaning, scope, level of

abstraction, or temporal validity is not provided under J2EE. Accordingly, facilities for

applying computer aid to the development of the mechanisms required to resolve such

heterogeneities is not provided under J2EE.

(7) Support for Federation Extensibility. Similar to CORBA

and the COM+ family, J2EE’s distributed computing capabilities can be utilized to define

a client-server architecture where the methods used for effecting joint task execution and

information exchange among federation components are identified by Java interfaces.

Adding a new system to a federation created using J2EE’s distributed computing

capabilities can be accomplished by defining new interfaces for the services provided by

that system. Existing systems would continue to use the existing interfaces to share tasks

and exchange information among themselves. New systems could also access the

capability provided by an existing system by invoking the method calls provided by the

client stubs generated for that system’s interfaces. Only when a new system’s

capabilities are required by an existing system would modification to that system be

necessary in order to access the methods provided by the new system interfaces. Thus

the federation can be extended without impacting original system interoperation.

In addition, J2EE provides greater extensibility during

modification of the information and operations shared among systems than does CORBA

or the COM+ family. Modifying a class’s existing capability can be done in a manner

similar to that done when adding a new system to an existing federation. In addition to

providing interface extension through inheritance, classes in Java can have more than one

interface. Thus changes to an existing class can be accomplished by creating a new class

for the modified information as an extension to the existing one. Then, a new interface

can be defined for this new class, with the new interface containing the unchanged

 52

methods from the original class as well as any modified methods. Components relying

on existing interfaces will continue to use them, whereas components requiring the new

functionality will use the new interface. Also, because Java allows interface methods to

be overloaded, the problem of cascading method names seen in the interface extension

approach for providing type versioning in CORBA is not present in J2EE. Because J2EE

provides mechanisms for both adding new systems to a federation and for modifying the

existing information and operations shared among systems without impacting the

interoperation of the original systems in the federation, it is considered to provide full

support for federation extensibility.

(8) Information Exchange versus Joint Task Execution. As

stated in Section II.C.6.f(2) above, the cornerstone of the distributed computing

capability provided by J2EE is the capability for an application to invoke the methods of

an object residing in a different address space. This capability for joint task execution

among systems can also be used for information exchange; information to be sent from a

client to a server could be included as parameter values of a getItemFromSender server

method invoked by the client.

4. SeeBeyond Integration Suite
The SeeBeyondTM integration suite provides an architecture and set of tools

designed for the integration of incompatible legacy systems, databases, packaged

applications, middleware products, communication protocols, messaging standards, and

data access paradigms. SeeBeyond targets the Enterprise Application Integration (EAI),

Business-to-Business (B2B), and Business-to-Consumer (B2C) domains to provide an

eBusiness Integration (eBI) solution to the integration of incompatible and non-

interoperable business applications. The two primary components of the SeeBeyond

integration suite, e*GateTM Integrator and e*Index Global IdentifierTM, are discussed

separately, followed by a combined assessment of the SeeBeyond suite’s interoperability

characteristics.

a. e*GateTM Integrator Overview

 53

SeeBeyond’s e*GateTM Integrator provides an open and extensible

framework for eBusiness integration. e*Gate enables centralized management of the

global eBusiness infrastructure, providing guaranteed delivery with packaged

transformation and application integration. e*Gate provides high-level business process

management, low-level data-type conversion, and communication set-up to enable

integration of incompatible legacy systems, databases, packaged applications,

middleware products, communication protocols, messaging standards, and data access

paradigms.

Among the capabilities provided by e*Gate is the ability to:

• Manage information exchange between legacy systems and Web Servers,
• Integrate systems based on COM, CORBA, and Java,
• Serve as a universal gateway between Oracle, SQL Server, Sybase, Informix,

DB2, and older-technology databases, and
• Provide an Enterprise Integration Backbone. [EGI00]

(1) e*Gate Integrator Components. The e*Gate integrator

consists of four core components, as depicted in Figure II-6: e*Ways, Intelligent Queues

(IQs), Business Object Brokers (BOBs), and a central Registry.

Figure II-6. e*Gate Components (From [EGI00])

An e*Way is an intelligent adapter that enables communication

between a connected application, database, or similar element and other e*Gate

components. It provides bi-directional, multi-threaded communication in either an event-

driven or scheduled batch mode of operation. The e*Way adapter uses collaborations

 54

defined using Java, C/C++, XSLT, or the Lisp-based Monk scripting language to provide

transformations required for heterogeneous system integration. SeeBeyond makes

available a number of ready-to-use database, application, file system, communication

protocol, messaging system, and data format/model adapters as well as supports the

capability for custom adapter generation.

Intelligent Queues (IQs) are a storage and message routing facility

that provide persistent storage, guaranteed message delivery, event state support, and

support for third party queues. IQs ensure that events are transmitted in the proper

sequence and without duplication, even during hardware failure recovery.

A Business Object Broker (BOB) is an internal e*Way that is

enabled to communicate only with IQs. BOBs can be used to implement complex, multi-

step business processes. BOBs utilize routing, parallel processing, and load balancing

techniques to prevent e*Way bottlenecks and to provide reliable communications across

unreliable links.

The Registry is a central repository that contains the master copy

of all the data processing and business rules, known as collaborations, as well as all of

the events that carry information between processes. A Control Broker that updates the

run-time components as information is changed replicates registry information on each

platform. The Control Broker serves to insulate the platform from temporary Registry

faults or communication problems. [EGI00]

(2) e*Gate Architecture. As shown in Figure II-7, e*Gate

utilizes a layered architecture to separate high-level business process modeling from

lower-level connectivity and translation concerns. The three layers, Views and Controls,

Collaboration Logic, and Application Access are further divided into two sub-layers each

as depicted.

 55

Figure II-7. e*Gate Architecture (From [EGI00])

The Views and Controls layer contains the Graphic User Interface

(GUI) that enables people to use the models to run the business. This layer also includes

the Registry that contains the data processing and business rules, known as

Collaborations, and the definition of Events, which carry information between processes.

Finally, the Views and Controls layer includes the Control Brokers residing on each host,

which are used to replicate registry information on each platform.

The Collaboration Logic layer contains the Collaboration Rules

Editor used to construct the data and process models that define the structure and

operation of the business. It provides tools for creating a UML-based graphical model of

the business processes to be automated. Analysts create Collaborations and Events that

represent the business stages, transitions, and data processing activities. Collaborations

use rules to identify messages, transform data and invoke APIs. The Collaboration Logic

layer provides a graphical linkage between the analytical view of business rules and the

technical view of messages, data and API calls necessary to implement the business rules.

The Application Access layer connects the business models to the

internal and external applications. The Intelligent Queuing and Application Connectivity

sub-layers route Events both within the e*Gate environment and to and from external

applications. Intelligent Queues provide persistent recording of Event state information

 56

necessary to ensure that Events are handled in proper sequence without risk of

duplication. [EGI00]

(3) eBusiness Integration With e*Gate. eBusiness integration

using e*Gate involves six steps: Model, Generate, Configure, Collaborate, Monitor, and

Manage (see Figure II-8). First, a business analyst uses e*Gate to model the top-level

business practices for the organization using a UML-based GUI presentation. Business

rules tables associate sources with message identifiers, identifiers with field-level

transformation operations, and transformed messages with destinations.

Figure II-8. e*Gate Integration Process (From [Smi01])

Then, an e*Gate companion tool, e*Insight, automatically

generates e*Gate integration components. With e*Insight, users determine whether an

activity should be implemented as an e*Way or a BOB in the e*Gate schema and then

configure e*Gate accordingly. Users then access the Collaboration editor to create and/or

modify collaborations. Reusable e*Way adapters connect e*Gate to the application to be

integrated. A library of existing adapters provides compatibility with most network

protocols and information environments. e*Way adapters provide translation between a

connected application, database, communication protocol, etc. and the e*Gate network.

 57

The e*Way adapter provides translation routines to convert between the associated

component’s format and all other required formats within the enterprise. Finally, e*Gate

provides both List and Diagram views to monitor the stages that business process

activities pass through as the business process instance runs, providing the analyst with

the information he needs to manage the activity. [EGI00]

b. e*Index Global Identifier Overview
The e*Index Global Identifier application from SeeBeyond runs on the

e*Gate Integrator platform and is designed to allow the sharing of customer information

between disparate systems. The e*Index application employs a relational database of

persons’ records with each record automatically cross-referenced to the various local

identifiers used for that person in referenced local systems. This cross-reference provides

a single global identifier for a person that corresponds to the multiple local identifiers that

person may have in different systems.

SeeBeyond’s e*Index consists of the following key components:

• Global Person Database
• Cross-Index of Identifiers
• Real-Time Automated Matching Algorithm
• Quality Workstation for Customer Information Management

e*Index maintains a global relational database that contains a universal

identifier for each person and relevant demographic information used by e*Index’s

automated matching process to locate the same person in multiple systems. Figure II-9

provides a view of the global identifier customer detail screen illustrating a customer

universal identifier (UID) and a sample of the demographic data used for correlating

customer instances.

Also depicted in Figure II-9 is the cross-index used to match a person’s

universal identifier in the Global Person Database to each of the local identifiers (local

ID) for that person contained in systems across the enterprise. This cross-index allows

systems to exchange customer information with each other without regard to differences

in the local customer ID used by each system. During transit of a message through

e*Gate, the local ID provided by the source system is replaced with the local ID used by

the destination system, making the difference in ID’s transparent to the two systems.

 58

Figure II-9. e*Index Global Identifier Customer Detail Screen (From [EIGI00])

In constructing the cross-index, e*Index uses a real-time matching

algorithm that uses fuzzy logic and statistical weighting techniques to automatically

correlate local customer information with corresponding information in the global

database. The matching algorithm enables a database administrator to tailor the fields

used to determine a match, assign specific weights to the fields based on relative

importance in deciding correspondence, and to set threshold values for automatic match

determination.

The Quality Workstation application is used to facilitate managing the

information within the global relational database. The workstation is used to search the

database for individual records, add, delete or modify records in the database, identify

and remove duplicate records, and provide an audit and reporting capability to track

changes to the database. [EIGI00]

 59

c. Evaluation of Interoperability Approach
The following evaluation of interoperability characteristics is done for

SeeBeyond’s eBusiness suite- their e*Gate Integrator and e*Index Global Identifier.

While e*Gate provides the framework for achieving interoperability among a group of

connected systems, e*Index provides additional capabilities for limited definition of a

common data model for representing the real-world entities involved in system

interoperation and a means for correlating this enterprise wide model with system-

specific implementations. The results of the evaluation are summarized in Table II-4 and

discussed below.

Table II-4. Evaluation of SeeBeyond Support for Resolution of Modeling Differences

Evaluation Criteria SeeBeyond
Types of Heterogeneity

Addressed
Hardware and Operating System - TBD;
Organizational Models- partial;
Structure;
Scope;
Level of Abstraction;
Meaning;
Presentation;
Temporal Validity;

Capability for Application
of Computer-Aid for
Model Correlation?

Partial. e*Index provides correlation of customer ID’s.

Knowledge of Remote
System Methods Required?

Yes. (using either CORBA, DCOM, or Java RMI for
remote method invocation).

Modification to Existing
System Required?

No. e*Way adapter can be deployed anywhere on the
network.

Translation Methodology? Point-to-point translation definition except for
e*Index’ use of global identifier for Customers.

Capability for Application
of Computer-Aid for

Translation Development?

Yes. GUI-based Collaboration Rules editor used for
translation development; reuse using library of
pre-built translations.

Support for Federation
Extensibility

Not determinable.

Information Exchange vs.
Joint Task Execution

Information Exchange.

 60

(1) Types of Heterogeneity Addressed. SeeBeyond’s e*Gate

Integrator targets the interoperation of independently developed, heterogeneous software

systems. e*Gate attempts to resolve system heterogeneities that result when dissimilar

operating systems, databases, communication protocols, interpretations, etc. are required

to be integrated. e*Gate focuses primarily on resolving incompatibilities in databases,

messaging standards, data access paradigms, and communication protocols.

Heterogeneity of Hardware and Operating Systems. While e*Gate

runs on all major variations of UNIX and Windows, as well as OS/390, lack of a defined

system-independent over-the-wire format such as that provided by CORBA’s ORB, or a

common set of types such as that defined for OMG IDL or Microsoft’s IDL, makes it

unclear as to what extent e*Gate supports resolution of hardware and operating system

differences. From the information available in [EGI00], it appears that any differences

attributable to platform or operating system must be resolved through system-specific

translations provided as part of the Collaboration Rules for a specified e*Way adapter.

Heterogeneity of Organizational Models. Similarly, lack of a

system- or language-independent interface definition language for specifying interactions

between component systems makes e*Gate’s capability for handling heterogeneities in

organizational models uncertain. It does appear that e*Gate provides numerous pre-

defined e*Way adapters for sharing information between Oracle, SQL Server, Sybase,

Informix, DB2, IMS and older-technology databases and is thus able to resolve

organizational model differences between them. Additionally, e*Gate’s full support for

COM/DCOM and CORBA should enable it to take advantage of those architectures’

mechanisms for resolving organizational model heterogeneity.

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning,

Presentation, and Temporal Validity. The primary means for resolving heterogeneities

among applications is through the e*Way adapter’s use of pre-defined and user-defined

collaborations. Collaborations contain the transformations and translations required to

reconcile differences between applications. The Collaboration Rules Editor generates

graphical collaboration rules based on a high level scripting language (Monk) and

provides access to a library of pre-defined data and application connectivity functions.

 61

Additionally, e*Gate provides C, C++, and JAVA Collaboration Services to enable

translation specification using one of these standard programming language

environments.

(2) Capability for Application of Computer Aid for Model

Correlation. e*Gate, on its own, does not provide support for correlation of information

being exchanged between systems. A companion product, e*Index, does provide a

limited capability for correlating customers in different databases. e*Index’s real-time

automated matching algorithm uses fuzzy logic and statistical weighting techniques to

automatically build a cross reference between a person’s universal identifier and each

local identifier. The e*Index matching algorithm only performs correlation of person

records, although there are plans to extend the capability to other types of records. Other

correlation requirements are the responsibility of the system designer. For example, in

integrating databases, the system designer is responsible for determining which table in

one database corresponds to which table in the other. Once this correspondence is

established, e*Gate will assist the designer in identifying a mapping between table

elements and in defining any translations necessary to convert between element

representations.

(3) Required Knowledge of Remote Operations. e*Gate in

itself does not define a client-server architecture as do CORBA, COM+, and J2EE.

Therefore, e*Gate does not provide facilities for client invocation of server methods.

E*Gate does provide adapters for interfacing with CORBA, COM+, and Java

applications. These technologies require prior knowledge of remote system methods in

order to utilize their services.

(4) Required Modification to Existing System. e*Gate uses an

e*Way component to interface external applications to the enterprise. These e*Ways can

be deployed on the application’s platform, on another host or platform, or anywhere on

the network. Therefore, modification to the existing system application is not required to

utilize e*Gate’s capabilities, provided that the application provides an API to expose its

functionality.

 62

(5) Translation Methodology. Although system

interconnections in e*Gate are handled in a network-centric fashion, translation between

different representations requires identification of the source and destination

representations, effectively defining a point-to-point translation methodology and

potentially requiring n(n-1) translators for n different representations. e*Index’s global

relational database provides a universal identifier for each customer together with

relevant descriptive information that serves as a common intermediate representation for

customer identification; however, this capability does not extend to other entities

modeled by the various systems in the enterprise.

(6) Capability for Application of Computer Aid for Translation

Development. e*Gate provides the capability to translate between different data

representations by enabling the designer to 1) map elements of one representation to

another, and 2) define the translations required to convert one representation to the other

(or choose from a pre-defined library of translations). E*Gate utilizes a GUI-based

Collaboration Rules editor to assist the designer in the mapping process, and automation

and reuse techniques to help with translator definition. A library of pre-built

functionality is available for all levels of the integration solution (including low-level

translations). In addition, the Lisp-based Monk scripting language is available for high-

level definition of translations when required conversions are not available in the library.

(7) Support for Federation Extensibility. Sufficient

information was not available from SeeBeyond to evaluate the support for federation

extensibility provided by their products. While it is presumed that e*Gate provides some

level of support for adding to or modifying existing system federations created using the

product; however, details regarding any provided versioning support or other extension or

modification mechanisms were not available.

(8) Information Exchange versus Joint Task Execution.

e*Gate focuses primarily on resolving issues relating to data interchange. Support for

joint task execution is principally handled by using adapters for interfacing COM,

CORBA, and Java and applications.

 63

5. The High Level Architecture for Modeling and Simulation (HLA)
The High Level Architecture (HLA) [HLA02] is a software architecture designed

to enable individual computer simulations to be combined into larger simulations. As

defined by Shaw and Garlan [SG96], a software architecture involves elements,

interactions between those elements, and patterns for those interactions. In the HLA, the

combined simulation system created from a compilation of individual computer

simulations is termed a federation. The elements of a federation consist of a number of

federates, a Runtime Infrastructure (RTI), and a common object model of data exchanged

between federates, the Federation Object Model (FOM). Rules governing the interaction

between federation elements are contained in the HLA standard, as are templates for

defining the patterns to be followed by those interactions. I first present an overview of

the elements comprising the HLA, and then discuss the HLA Specification and its

contents, which provides the rules governing interactions between elements and patterns

for those interactions. I then provide an assessment of HLA’s capabilities, using the

criteria for evaluating interoperability approaches defined in Section II.B.

a. HLA Elements
As mentioned in the previous paragraph, HLA elements consist of the

individual federates comprising a federation, an RTI that enables federates to execute

together as a federation, and an FOM that provides a common object model of the data

exchanged between federates. A federate is an individual simulation system that forms a

federation when combined with other simulations. A federate could represent one

software platform such as a combat vehicle simulator, or an aggregate simulation, such as

a combined battlefield simulation system used for tactics planning or training. A federate

is typically larger than a common software component; it generally exists as a complete

running program rather than component routines or objects in a library.

 64

The RTI provides functions needed for simulation interoperability that

apply generically to component-based simulation systems as opposed to those that are

specific to a particular federate. It controls interactions between federates. It provides an

interface between federates and the RTI for execution of RTI functionality. It contains

network functions needed to accomplish distribution in a distributed federation. Finally,

the RTI serves as an intermediary between federates, sheltering them from changes to the

RTI or to each other. The RTI is acquired from an HLA middleware vendor for use by

the federation developer.

The FOM provides a common object model of the data exchanged

between federates in a federation. The FOM consists of data created by the federation

developer from knowledge of information to be shared among federates. The FOM is

provided as a parameter to the RTI to manage a federation execution; a term used in the

HLA to describe a group of federates executing together during a specified session.

[KWD99]

b. HLA Specification
The HLA specification provides the standard for the rules governing

interactions between elements of a federation and the patterns for those interactions.

Specification of the initial HLA technical architecture was completed in 1996. The latest

version of this specification, version 1.3, was released in April 1998 and adopted by the

Object Management Group (OMG) that same year as the “Facility for Distributed

Simulation Systems” standard. The Institute for Electrical and Electronic Engineers

(IEEE) also approved standards P1516 (HLA Rules), P1516.1 (Interface Specification),

and P1516.2 (Object Model Template) in September 2000 covering the HLA. The HLA

standard detailed by the Specification consists of the following components:

• Object Model Template (OMT)- provides a meta-model that describes the
allowed structure for the Federation Object Model (FOM).

• Interface Specification- specifies the interface between Federates and the Runtime
Infrastructure (RTI); includes the interface the RTI presents to federates and the
interface federates present to the RTI.

• HLA Rules- provide the principles and conventions that must be followed to
achieve proper interaction of federates during a federation execution; HLA Rules
provide the design principles for the Interface Specifications and OMT.

Details of these specification components are found in the following paragraphs.

(1) Object Model Template (OMT). The OMT prescribes the

structure of the FOM for any HLA-compliant federation. A federation-specific FOM is

created for each federation. The FOM describes the information that is shared among

federates. Data exchange among federates is accomplished via the RTI; the FOM

 65

prescribes the vocabulary for such data exchange. The RTI uses the FOM to achieve

federate interaction.

The OMT defines two main components for use in constructing an

FOM: object classes and interaction classes. Object classes are used to capture simulated

entities that are of interest to more than one federate and that are expected to persist for

some interval of simulated time. Interaction classes are used to represent simulated

events between federates that occur at a point in simulated time but don’t persist.

Information regarding an object class is contained in its attributes. Similar information is

contained in an interaction class’s parameters. Communication between federates is

accomplished via the RTI through exchange of attribute and interaction class instances.

Object and interaction classes are defined using a hierarchical

structure in order to enable the FOM to change without effecting federates that depend on

the original class definition. New classes are created by specializing existing classes.

The HLA is designed so that an FOM can be extended without invalidating federate

software written to expect the original FOM.

(2) Interface Specification. The interface specification defines

the services the RTI offers to federates and vice versa. HLA services fall into six groups:

1) Federation Management, 2) Declaration Management, 3) Object Management,

4) Ownership Management, 5) Time Management, and 6) Data Distribution

Management.

Federation Management services define a federation execution in

terms of existence and membership. These services provide facilities for creating a

federation execution and enabling a federate to join the execution or resign from it.

Federation management services are also used to accomplish federation-wide operations

such as synchronization between federates and federation status capture.

Declaration Management services provide the publish/subscribe

mechanism by which federates share attributes and interactions. Declarations signal a

federate’s intent to produce or consume data and are used to transform data received by a

federate. Each federate must provide a translation between its internal notion of

 66

simulated entities and the FOM’s notion. This process may be involved if a federate was

not developed with the intention of HLA compliance.

Object Management services define the services used for the actual

exchange of data. They are used by a federate to send and receive interactions and to

register and update an object class’s attributes. They are used by the RTI to send

interactions, discover new objects, and to receive updates of object attributes.

A federate must own an object attribute in order to update its

value. Ownership management services are used by the RTI to transfer object attribute

ownership among federates. Different federates may own the various attributes of an

object, and are thus responsible for updating the attributes that they own. Ownership

management services govern the transfer of object ownership between federates.

Time Management services enable federates to advance their

logical time in coordination with other federates in order to provide federation

synchronization. These services are also used to control the delivery of time-stamped

events in order to ensure proper event sequencing between federates.

Data Distribution Management services are used to control the

producer-consumer relationships among federates. Whereas Declaration Management

services provide the notification mechanism for federates to alert the RTI that it has data

to publish or that it has a subscription request, Data Distribution Management services

supply the mechanisms for providing the object and interaction class instance data to

fulfill the publish-subscribe transaction.

(3) HLA Rules. HLA Rules provide the design goals and

constraints for HLA-compliant modeling and simulation systems. HLA Rules include

Federation Rules that apply to the federation as a whole and stipulate how federates must

interact and Federate Rules that specify the interface and support that a federate must

provide to the federation.

Included in the Federation Rules is the requirement for a federation

to provide an FOM that stipulates the common vocabulary for the federation. The rules

also require federates to exchange FOM data via the RTI, with federate-RTI interactions

governed by the HLA Interface Specification. Additionally, the rules require that

 67

simulation-specific object representations are kept in the federates and not in the RTI.

Finally, Federation Rules specify that an object attribute can be owned by at most one

federate at any time- this prevents problems associated with simultaneous attempts to

update an attribute’s value.

The Federate Rules require federates to have an HLA Simulation

Object Model (SOM) documented in accordance with the HLA OMT to record

simulation information that a federate might expose to the federation. These rules require

that a federate comply with its SOM when sending and/or receiving attributes and

interactions. They also obligate a federate to adhere to the policy specified in its SOM

regarding transfer and/or acceptance of attribute ownership as well as the conditions

specified for attribute update. Finally, Federate Rules stipulate that federates manage

their local time in a way that will allow them to coordinate data exchange with other

members of the federation. [KWD99]

c. Evaluation of Interoperability Approach
An evaluation of HLA’s interoperability characteristics is done using the

criteria specified in Section II.B. The results of the evaluation are summarized in Table

II-5 and discussed below.

(1) Types of Heterogeneity Addressed. The RTI has no notion

of the type of an attribute or parameter; it deals with them as uninterpreted sequences of

bytes. If source and destination federates differ in their interpretation of transmitted data,

i.e., they use different types to represent the same attribute or parameter, then the data

may be interpreted incorrectly unless some type of conversion is performed between

representations. In HLA, the burden of interpreting attributes and parameters is placed

on the federates, requiring federation designers to agree on the interpretation selected or

to provide translations to compensate for differences when they exist.

 68

However, implementation of the HLA Interface Specification can

be accomplished using other interoperability approaches. One such approach provides

implementation of RTI interfaces with the Object Management Group (OMG) Interface

Definition Language (IDL) API utilized by the Common Object Request Broker

Architecture (CORBA). OMG IDL’s primitive and constructed types could serve as a

common, intermediate representation. Under this approach, federates would be

responsible for modeling object attributes or interaction parameters using OMG IDL.

Differences between the federate model and the OMG IDL model relating to

heterogeneity of hardware and operating systems would be resolved by the IDL

implementation used by the federate.

Table II-5. Evaluation of HLA Support for Resolution of Modeling Differences

Evaluation Criteria HLA
Types of Heterogeneity

Addressed
Hardware and Operating System

(using OMG IDL);
Organizational Models (using OMG IDL);
Presentation (Partial, using OMG IDL)

Capability for Application
of Computer-Aid for
Model Correlation?

No. Responsibility for resolving differences in
attribute and parameter interpretation placed on
federates; no assistance provided by Object
Model Development Tool in establishing
correspondence between interpretations.

Knowledge of Remote
System Methods Required?

Not Applicable. Direct interaction between federates
is not allowed in the HLA.

Modification to Existing
System Required?

Yes. Modification to non-HLA-compliant federates
required in order to exchange data.

Translation Methodology? Not Specified. HLA’s definition of a common object
model for the data exchanged between federates
(the FOM) would suggest use of a two-step
translation methodology.

Capability for Application
of Computer-Aid for

Translation Development?

No. Responsibility for resolving differences in
attribute and parameter interpretation placed on
federates; no assistance provided by Object
Model Development Tool for creating
translations to compensate for differences in data
interpretation.

Support for Federation
Extensibility

Full support. Object and interaction class inheritance
hierarchy enables federation to be extended or
modified without invalidating existing federation
software.

Information Exchange vs.
Joint Task Execution?

Information Exchange.

Similarly, using OMG IDL’s definition of a set of primitive and

constructed types serves to eliminate problems resulting from the use of disparate data

 69

types. However, resolution of higher-level differences in presentation such as relates to

domain mismatch problems, different units of measure, differences in precision, and

different field lengths or variations in integrity constraints are not resolved by IDL and

must therefore be addressed by the system designer.

OMG IDL also supports resolution of differences caused by

heterogeneity of organizational models. As was seen with CORBA in

Section II.C.1.c(1), OMG IDL enables federates implemented in either object-oriented or

procedural languages to interface with the RTI through the use of IDL’s client stubs and

server skeletons.

As seen in Section II.C.1.c(1), other modeling differences caused

by heterogeneities of structure, scope, level of abstraction, meaning, and temporal

validity are not resolved by the use of OMG IDL. These differences are the

responsibility of the federates to resolve.

(2) Capability for Application of Computer Aid for Model

Correlation. From experience gained during early efforts to use the architecture for

achieving interoperability among simulation systems, it became evident to HLA’s

developers that automation was needed to support the federation development process.

Three tools were identified to provide automation support to this process: 1) Object

Model Development Tool, 2) Object Model Library, and 3) Object Model Data

Dictionary.

The Object Model Development Tool provides automated support

for developing HLA object models, for generating RTI federation execution data, and for

storing and retrieving object models in the Object Model Library. The Object Model

Library provides storage of Federation Object Models (FOMs) and Simulation Object

Models (SOMs) to support object model reuse. The Object Model Data Dictionary

supports object model standardization through maintenance of a repository of common

data components for object model development.

As mentioned previously in Section II.C.5.c(1), the RTI does not

consider attribute or parameter type when facilitating federate data exchange, placing the

burden of attribute and parameter interpretation on the federates. Therefore, each

 70

federate is free to use whatever model it deems appropriate for attribute and parameter

representation. Potential differences between attribute and parameter models could

occur, particularly when combining independently developed federates. Establishing

correspondence between different models of the same data is required to enable federates

to interoperate. The Object Model Development Tool could provide assistance for

correlating different models of the same data on different systems. However, HLA does

not provide any capability for application of computer aid for model correlation.

(3) Required Knowledge of Remote Operations. HLA

provides facilities for information exchange among federation components. Such

information exchange is done through interaction between a federate and the RTI;

federates do not interact explicitly as they might using CORBA, the COM+ family, or

J2EE. Interactions with the RTI are explicitly defined in the HLA interface specification.

Direct interaction between federates is not allowed in the HLA, therefore knowledge of

what operations a federate might make available for external invocation is not applicable.

(4) Required Modification to Existing System. In order to

participate in an HLA federation, federates must be HLA-compliant. Federates must

comply with the HLA Interface Specification in order to communicate with the RTI.

They must also follow the principles and conventions for federation operation specified

in the HLA rules. Modification is required for non-HLA compliant federates to exchange

information using the HLA.

(5) Translation Methodology. The translation methodology

used for resolving differences in interpretation of object attributes and interaction

parameters among federates is not specified by the HLA. However, HLA’s definition of

a common object model for the data exchanged between federates (the FOM) would

suggest that a two-step translation methodology be used. Using a two-step translation

process, a federate would be responsible for converting the attributes and parameters

from its own model to that used by the FOM.

(6) Capability for Application of Computer Aid for Translation

Development. HLA places the burden of interpreting attributes and parameters on the

federates. However, it does not provide any support to the developer for creating

 71

translations to compensate for differences in interpretation of such data on different

systems. While such a capability would seem appropriate for inclusion with HLA’s

Object Model Development Tool, it has not been provided.

(7) Support for Federation Extensibility. Under the HLA, each

federation defines a Federation Object Model (FOM) that describes the data and

occurrences that are shared among federates. The FOM consists of object classes and

interaction classes. Object and interaction classes are organized as separate single-

inheritance trees to reflect the relationships among classes. Each tree contains a single

root class, ObjectRoot and InteractionRoot, which define no parameters or attributes,

respectively. All other classes inherit from these root classes, with each class having

exactly one immediate ancestor or superclass. The resultant inheritance hierarchies are

used to protect federates from change. Federates that were written to expect and use

certain object and interaction classes can continue to use them even if the FOM is

modified by extending one of the existing classes. Existing federates will continue to

operate using the original object and interaction classes while newer federates will use

attributes and parameters from the new classes that extend the original classes.

This mechanism can be used both for adding new object and

interaction classes to a federation or for modifying existing classes. The object model of

the data and occurrences shared among systems (the FOM) can thus be extended or

modified without invalidating federation software that was written assuming an earlier

version of the FOM. Therefore, HLA is considered to provide full support for federation

extensibility.

(8) Information Exchange versus Joint Task Execution. HLA

is designed to support information exchange among federation components. As stated in

Section II.C.5.c(3), direct interaction between federates is not allowed in the HLA,

therefore precluding joint task execution among systems. In line with that prohibition,

HLA objects and interactions have no behaviors associated with them in the FOM.

 72

6. eXtensible Markup Language (XML)2
While not providing a distributed computing facility such as that offered by

CORBA, COM+, or J2EE, or an architecture for combining independently developed

systems such as that presented by SeeBeyond’s integration suite or HLA, the eXtensible

Markup Language (XML) has been publicized as a means for achieving system

interoperability. XML, developed by the World Wide Web Consortium (W3C), provides

a self-describing means for representing the data used by and shared among applications.

It is an extension of the Standard Generalized Markup Language (SGML) and is designed

to provide the flexibility and power of SGML while attempting to capture the widespread

acceptance and relative simplicity of another SGML derivative, the HyperText Markup

Language (HTML) [ABK00].

The cornerstone of the eXtensible Markup Language is the XML document,

which consists of a sequence of data elements and element attributes with “tags” used to

delimit and describe the meaning and use of the data to the user or relevant application.

An XML document can consist of any permissible sequence of elements and their

attributes. In order that the pertinent application might be better able to understand and

utilize the data in a received document, XML utilizes a schema to structure and delimit

the allowable values for XML documents. This schema can be in the form of a

Document Type Definition (DTD) or of the newer XML Schema. Interfaced systems can

utilize the DTD or XML Schema to specify the vocabulary of a system’s allowable data

[ABK00].

XML is actually a family of technologies. In addition to the DTD and XML

Schema, XML’s immediate family includes the Document Object Model (DOM), the

Simple API for XML (SAX), and the eXtensible Stylesheet Language (XSL). Each of

these will be discussed in the following paragraphs. First, though a quick illustration of

an XML document’s structure and a discussion of the key concepts of well-formedness

and validity is provided.

2 Portions of this material originally appeared in the thesis entitled Integrated

Development Environment (IDE) for Construction of a Federation Interoperability
Object Model (FIOM) [CY01].

 73

a. XML basics
The best way to get a feel for XML is by viewing an example. Figure

II-10 shows a simple XML document providing a citation for this dissertation.

<?xml version="1.0" encoding="UTF-8"?>
< >
 < >Paul Young</ >
 < >Heterogeneous Software System Interoperability Through
 Computer-Aided Resolution of Modeling Differences</ >
 < ="Ph.D. Dissertation"/>
 < >Naval Postgraduate School</ >
 < >Monterery, CA</ >
 < >June 2002</ >
</ >

reference
author author
title

title
publication
publisher publisher
publisherLocation publisherLocation
publicationDate publicationDate

reference

 publicationType

Figure II-10. Example XML Document

From the figure, XML appears to look a lot like HTML. The major

difference is that XML is concerned primarily with representing the content of the data

whereas HTML is more concerned with its presentation. Another difference is that XML

is not constrained by a static tag set as is HTML; the XML designer is free to define tags

however he sees fit. XML’s tag set thus provides the added benefit of separating the

model created from its view. All XML documents are properly nested (hierarchical) tree

structures. This example document contains a root element <reference>, which contains

child elements <author>, <title>, <publication>, <publisher>, <publisherLocation>, and

<publicationDate>. In addition, the (empty) <publication> element includes an attribute

publicationType which is used to further clarify the contents provided in the element.

Notice that the XML document nicely describes the structure of the data but does not say

much as to what the elements mean, other than what can be inferred by the element

names.

(1) Well-formedness. A document is not an XML document

unless it is well-formed, i.e., syntactically correct, according to the W3C’s XML

specification. This means that an ill-formed document will not be accepted for

processing. This simplifies the internal code of parsers and also speeds up the processing

of documents.

 74

(2) Validity. An XML document is valid if it has an associated

DTD or XML Schema and if the document complies with that schema. A schema further

constrains the syntax of the XML document and also adds an implied semantics to the

XML document through the terms used to define the allowable document tag sets.

b. Constraining Content
(1) Document Type Definition (DTD). A DTD specifies the

logical structure of an XML document. The DTD provides a formal grammar for

describing document syntax and semantics. DTD’s have several characteristics that limit

their effectiveness for constraining document content. First, a DTD has no capability for

typing data content. DTDs treat almost all of its data as strings. Second, DTDs are not

written using XML. They use their own syntax for describing the allowable content of an

XML document. This disallows the use of many XML tools for displaying and

manipulating information within the DTD. Third, DTDs are closed constructs; there is

no simple and clear way to accomplish DTD extension, limiting the possibility of reuse

between applications. Thus, DTDs are largely being supplanted with another mechanism

for constraining document content, the XML Schema.

(2) XML Schema. The XML Schema addresses each of the

limitations seen with the use of DTDs for constraining document content. First, XML

Schema provides a number of primitive, generated, and user-defined data types for

specifying data content. Primitive types reflect those found in most modern

programming languages such as string, boolean, float, etc. Generated types build from

existing types such as the primitive types or other generated types. Users can also define

their own types using the primitive and generated types as building blocks in their

construction. Second, an XML Schema is defined using XML syntax. This enables the

capability of using existing XML parsers and other tools to construct and verify the well-

formedness of XML Schemas that is not possible with DTDs. Finally, XML Schemas are

extensible. A new XML Schema can be defined that extends an existing XML Schema;

XML Schema can be included as part of another XML Schema, reducing the amount of

rework required when defining commonly used data constructs. [BM01]

 75

c. Programmatic Access
The Document Object Model (DOM) and Simple API for XML (SAX)

were both created to serve the same purpose. Their purpose is to give one access to

change and update the information stored in XML documents using any programming

language. However, both of them take very different approaches in providing that access.

(1) Simple API for XML (SAX). SAX provides access to

documents as a sequence of events. It works as follows. A SAX parser sequentially

processes an XML document, signaling an event when a specified item such as an open

tag or close tag is found. The programmer is responsible for interpreting these events by

writing an XML document handler class. This handler class is responsible for specifying

what action is required to be taken when a tag is encountered, such as storing an element

for future reference.Document Object Model (DOM). XML only supports “has a” or

“parent-child” relationships, such as a <person> may contain sub-elements of <name>,

<social_security_number>, <height>, <weight>, <eye_color>, etc. This hierarchical tree

structure is preserved with the Document Object Model (DOM). The DOM creates a tree

of nodes based on the structure and information contained in an XML document.

Interacting with this tree provides access to the information contained in the XML

document. The DOM takes a generic approach, in that it will take any well-formed XML

document and model it as a document object tree. Once an XML parser or other custom

code has created the document object tree, access to the tree’s elements is provided for

modification or deletion of existing elements, or creation of new elements, using the

interfaces provided by the DOM’s API.

The choice of whether to use SAX or the DOM is dependent on

how much of a document the programmer wishes to access, ease of use, and performance

concerns. The SAX treats a document as a series of events, which means it can quickly

and efficiently analyze large XML documents. The drawback is that the programmer has

to define the data structure to hold element data. The DOM must load the entire

document in memory before one has access to its data. This takes more memory and time

as compared to SAX. The DOM’s strength is that the parser does almost everything,

from reading the XML document in, to creating an object model of the document’s

 76

contents, to providing a reference to this object model (a Document object) for

manipulation.

d. Translations
The XML family also provides a capability for translating between

different data representations via the eXtensible Stylesheet Language (XSL). XSL

actually consists of three component languages: a transformation language (XSLT), an

accessing language (XPath), and a formatting language (XSL-FO). As XSLF is

principally concerned with the presentation of data rather than its representation or

meaning, it will not be covered further.

XSLT is a high-level, declarative, XML-based language. It allows a

programmer to create XSLT stylesheets that can be used to transform an XML document

into any text-based document. Document transformation using XSL occurs as follows.

First, an XSL engine is used to convert an XML document into its equivalent tree

structure, which contains a number of nodes representing the elements and attributes of

the XML document. Next, a stylesheet is applied to the XML document tree structure to

transform the XML document to another form. XPath is used to traverse the document

tree, using pattern matching to locate the document component to be transformed. Then,

applying rules (templates) contained in the XSLT stylesheet, the body of the template

element replaces the matched node in the source document, transforming it to its

destination form.

Transformations involving other than component renaming and reordering

using XSLT is limited. XSLT does have a very limited, non-standardized capability for

performing functional transformations by escaping into another language such as

JavaScript or Java. The W3C’s XSLT Recommendation does not address any aspect of

this mechanism nor does it require that an XSLT processor provide any means for

performing functional transformations. This may be remedied in future versions of

XSLT.

e. XML Data-Binding

 77

Whereas XML provides extensive facilities for data definition,

programming languages often provide greater capability and more efficient methods of

data manipulation. XML data binding technology can be used to take advantage of an

object-oriented language’s data manipulation capabilities by converting XML schema

and documents into equivalent language-specific class and object definitions,

respectively. Then, manipulation of the data can be performed using the programming

language’s native facilities, with storage and transmission of the data between

applications accomplished using XML.

(1) An Object-Oriented View. If you view an XML schema in

object-oriented terms, it can be equated to a class. Furthermore, an XML document,

which is described and constrained by a particular schema, can be equated to an object.

XML data binding is Java methodology, along with an API, that allows programs to be

written that access and manipulate the content of XML documents in an object-oriented

fashion.

(2) Definition. The Java Architecture for XML Binding

(JAXB) Working Draft Specification [Rei01] defines XML data-binding as a facility

containing two components: A schema compiler and a marshaling framework. The

schema compiler binds components of an input schema to derived lightweight classes. A

lightweight class is conceptually the same as a Java Bean providing access to the content

of the corresponding schema component via a set of accessor and mutator (i.e., get and

set) methods. The derived lightweight classes will maintain all the constraints described

in its corresponding schema. This ensures that when the class instance (i.e., object) is

unmarshaled it will not only be well-formed, but valid as well. The marshaling

framework is a runtime API that, in conjunction with the derived lightweight classes,

supports three primary operations:

• The unmarshaling of an XML document into a Java object that is an instance of a
schema-derived class. This schema-derived class is composed of interrelated
instances of both existing and schema-derived classes.

• The marshaling of an object back into an XML document.
• The validation of member variables against the constraints expressed in the

schema.

In summary, the generated lightweight class will contain the following:

• Member variables representing the content of the input XML Schema.
• Get and set methods to access the generated member variables while maintaining

constraints of the original schema.

 78

• The unmarshal, marshal, and validate methods to convert an XML document into
an instance object of the generated lightweight class and back.

Figure II-11. XML and Java Relationships (From [Rei01]).

Figure II-11 above shows how XML Schemas, XML documents,

Java classes, and Java objects are related under this framework. As can be seen, these

relationships preserve equivalence, i.e., round tripping when converting between a

document and an object or correspondingly when converting between a schema and a

class. In other words, the unmarshaling of an XML Document and then immediate

marshaling of the produced Java object(s) should result in an equivalent copy of the

original XML Document.

(3) Why Use Data-Binding? The parse trees of the W3C DOM

API and parser events of the SAX API are primitive, constricting, and more focused on

the structure vice the content of a XML document. Also, the DOM and SAX APIs treat

all data as strings requiring the casting of data to a suitable type. In contrast, data binding

facilitates the direct mapping (transforming) of an XML document to objects while

maintaining the constraints imposed by its corresponding schema. Thus, all the benefits,

power, and familiarity of the object-oriented paradigm are available. In effect, the

programmer does not have to “reinvent the wheel” in gaining access to and updating the

element content within a document. The programmer has all this along with the

confidence that any resulting change in state will not violate well-formedness and validity

of the resulting XML document.

 79

f. Evaluation of Interoperability Approach
XML’s interoperability capabilities are evaluated using the criteria

specified in Section II.B. The results of the evaluation are summarized in Table II-6 and

discussed in the following paragraphs.

Table II-6. Evaluation of XML Support for Resolution of Modeling Differences

Evaluation Criteria XML
Types of Heterogeneity

Addressed
Hardware and Operating System (using XML Schema

primitive and user defined types);
Organizational Models (XML useable as medium for

information exchange with either object-oriented
or procedural languages);

Structure (structural differences resolvable using
XSLT);

Presentation (Partial. XML Schema types enable use
of common data type between representations);

Meaning (differences in meaning resolvable using
XSLT)

Capability for Application
of Computer-Aid for
Model Correlation?

No.

Knowledge of Remote
System Methods Required?

Not applicable.

Modification to Existing
System Required?

No. XSLT could be used in wrapper or middleware
application to convert from native model of
external interface to XML model.

Translation Methodology? Not specified. XSLT could be used to define either a
point-to-point or two-step translation process.

Capability for Application
of Computer-Aid for

Translation Development?

Partial. XSLT provides declarative approach for
converting between representations. Limited
capability for translations requiring more than
renaming/reordering of data elements.

Support for Federation
Extensibility

Partial support. Data type extension nullifies parser
use for validation.

Information Exchange vs.
Joint Task Execution?

Information Exchange.

(1) Types of Heterogeneity Addressed.

Heterogeneity of Hardware and Operating Systems. XML Schema

provides a number of primitive, generated, and user-defined datatypes for specifying data
 80

content. The word size and style of data format for these data types is specified by the

XML Schema Datatypes specification [BM01]. As long as an XML implementation

(parser, etc.) is provided for interconnected platforms and common XML Schema

datatypes and constraints are used for specifying the data content used by communicating

applications, heterogeneities related to differences in hardware and operating system will

be resolved when using XML to exchange information among systems.

Heterogeneity of Organizational Models. XML provides a

mechanism for data definition and organization that is compatible with both object-

oriented and structured analysis and design approaches. Accordingly, XML is useable as

an information exchange medium with either object-oriented or procedural languages.

Heterogeneity of Presentation. The primitive, generated, and user-

defined datatypes specified in XML Schema provide a means for defining common data

types for the information shared among systems. XML Schema datatypes additionally

prescribe a means for specifying constraints on the data imposed by the problem domain.

These constraints include numeric bounds, set and list ordering, permissible string

representations, etc. By providing a means for defining common data types and

constraints for the information shared among systems, XML provides the capability for

resolving presentation differences related to the use of disparate data types. The

interoperability engineer must use methods outside those provided by XML to resolve

other presentation differences such as domain mismatch problems, the use of different

units of measure, differences in precision, and different field lengths or variations in

integrity constraints.

Heterogeneity of Structure and Meaning. When using XML to

specify the data content shared by communicating applications, heterogeneities of

structure and meaning between application data models can be resolved using XSLT.

Conversions between models are effected using an XSLT stylesheet, which employs a

declarative approach for converting between representations. Differences in structure

and meaning are resolved by defining stylesheet elements that map attributes or elements

in one model to their corresponding components in the other.

 81

Heterogeneity of Scope, Level of Abstraction, and Temporal

Validity. The use of XML Schema data types and XSLT do not provide the means for

resolving heterogeneities of scope, level of abstraction or temporal validity. The

interoperability engineer must provide other methods for resolving these types of

heterogeneity.

(2) Capability for Application of Computer Aid for Model

Correlation. While there are tools available for creating XSLT stylesheets that map one

XML format to another, there are no tools available that help determine the

correspondence between two XML formats used to model the same real-world entity in

the problem environment. Determining this correspondence is the responsibility of the

interoperability engineer.

(3) Required Knowledge of Remote Operations. XML does

not provide the capability for remote method invocation, as do CORBA, COM+ and Java

RMI. Therefore, the requirement for having prior knowledge of a remote system’s

operations in order to exploit their capability does not apply to XML.

(4) Required Modification to Existing System. As indicated in

Section II.C.6.f(1), XSLT can be used to resolve differences in structure and meaning

among independently developed systems. This is achieved by XSLT’s ability to convert

from one XML representation of the real-world entities whose state is shared among

systems to another. Although the information exchanged among systems may not be in

the form of an XML document conforming to a schema representation of the system’s

external interface, it may still be possible to use XML to resolve heterogeneities of

structure and meaning without requiring system modification. As mentioned in

Section II.C.6.d, XSLT can be used to convert from an XML representation to any other

text-based document. Therefore if the federation components use a text-based

mechanism for exporting or importing information (a common approach for many legacy

systems), a wrapper or middleware application of XSLT could be used to convert from

the text-based representation of the exported or imported information to an equivalent

XML representation. Then, XSLT could again be used to resolve differences in structure

and meaning between XML representations. Therefore, resolution of heterogeneities of

 82

structure and meaning could be accomplished without modification to existing systems

providing such a text-based method of information exchange.

(5) Translation Methodology. Use of XSLT to resolve

heterogeneities of structure and meaning could be accomplished using either a point-to-

point or two-step translation process. Translation of shared information could be

accomplished using XSLT to convert directly between source and destination

representations, or through the use of an intermediate representation, converting between

source or destination and intermediate representations.

(6) Capability for Application of Computer Aid for Translation

Development. XSLT provides the capability for resolving representational differences

related to heterogeneities of structure and meaning using a declarative approach for

converting between representations. Tools are available for creating XSLT stylesheets

that map from one XML format to another using a graphical drag and drop interface for

specifying the correspondence between the elements of the two formats. However,

limited capability is provided for translations requiring more than renaming or reordering

of data elements.

(7) Support for Federation Extensibility. Although XML

doesn’t have the same objective as the previously reviewed architectural and tool suite

approaches to interoperability, it can be used in creating an interoperable federation of

systems. Other approaches such as CORBA, COM+, and Java RMI are oriented around

providing a distributed computing system whereby components can invoke each other’s

methods, whereas XML’s focus is on the structured representation and definition of

information. XML alone cannot be used to define an interoperable federation; however,

the use of XML for describing data exchanged between components of a federation can

be used to support system interoperability.

As its name implies, XML is designed to be extensible. This

design feature can be used to support changes to the information shared among federation

systems as additional systems are added to the federation, or extensions are made to the

information exchanged among systems, or both, without adversely affecting

interoperation of the original system federation. To extend the definition of an existing

 83

data type for use in a later version, you simply add another element to the definition.

Applications can use standard tools such as the DOM or SAX to manipulate the

information contained in the XML definition of a data type, thus applications expecting

the original data type can selectively ignore the additional data elements while

applications that can make use of the additional information do so [SV02].

This methodology for data type extension is not without its

limitations, as applications that validate instances of a data type against a DTD or XML

Schema would fail if presented an instance of the extended data type when expecting the

original data type. The choice of whether to use schema validation is up to the

application, so data type extension could be accomplished by ignoring the validation

feature of the XML parser. However, data type content and consistency would have to be

enforced by the application, eliminating one of the benefits of XML use for data

description. Since XML alone cannot be used to define an interoperable federation and

data type extension cannot be accomplished in conjunction with the use of an XML

parser’s validation capability, XML is considered to only provide partial support for

federation extensibility.

(8) Information Exchange versus Joint Task Execution. XML

provides the means for representing the data used by and shared among applications. It

does not provide the capability for one application to execute the methods from another

as do CORBA, COM+, or Java RMI. Therefore, interaction among components of a

federation using XML is limited to information exchange.

D. SUMMARY
This chapter discussed the existence of modeling differences among

independently developed systems, citing the major causes of such differences as well as

providing a classification of system heterogeneity. Then, a number of criteria were

selected for conducting an evaluation of existing interoperability approaches in order to

compare their success in resolving such heterogeneities.

 84

These criteria were used to evaluate six of the leading approaches for achieving

interoperability among independently developed systems. The first of these approaches,

CORBA, provides the capability for addressing heterogeneities of hardware and

operating systems, organizational models, and for partially resolving heterogeneity of

presentation. CORBA also provides the capability for heterogeneity resolution in both an

information exchange and joint task execution scenario. However, CORBA’s

shortcomings include 1) failure to address the complete spectrum of heterogeneity;

2) lack of assistance in correlating different models of the same real-world entity on

component systems; 3) lack of assistance in defining the translations required to resolve

such modeling differences; 4) prior knowledge of a server’s method name and the type

and model of the method’s parameters are needed by a client system in order to utilize

their functionality; and 5) modification to existing systems not developed in compliance

with the CORBA standard is required in order to enable system interoperation.

The second approach, the COM+ architecture family, provides a similar capability

as that provided by CORBA. In addition, it enables interoperation among binary

software components whereas CORBA addresses interoperability at the source code

level. The COM+ family shares CORBA’s failure to address the complete spectrum of

heterogeneity and lack of assistance in correlating and resolving differences in real-world

entity models. Finally, the COM+ family requires prior knowledge of remote system

methods in order to utilize their functionality and requires modification to existing

systems not developed in compliance with COM+ standards in order to enable their

interoperation.

The third approach, J2EE, presents a competing approach to distributed

computing to that provided by CORBA and the COM+ family. J2EE’s strengths include

its support for both information exchange and joint task execution among federation

systems, its use of a two-step translation methodology for resolving heterogeneities of

hardware and operating systems, and its full support provided for both federation

extension and modification. Its shortcomings include 1) failure to address the complete

spectrum of system heterogeneity; 2) lack of capability for assistance in establishing

correspondence between different models of the same real-world entity; 3) requirement to

know the server’s name or identifying attributes in order to invoke the server’s methods

from a client; 4) requirement that both client and server applications be written in Java;

5) and lack of assistance in defining the translations needed to resolve system

 85

heterogeneities outside of the platform independence provided by the Java Virtual

Machine.

By contrast the fourth approach, SeeBeyond’s e*Gate Integrator and e*Index

Global Identifier, addresses each of the eight classes of heterogeneity, although some are

only partially dealt with. I was unable to determine from the available literature and from

communications with company representatives the extent to which heterogeneity of

hardware and operating systems are able to be resolved. However it was determined that

these products provide for only partial resolution of heterogeneity of organizational

models. SeeBeyond does provide limited support in correlating different models of the

same real-world entity on different systems. Currently this support is limited to the

correlation of customer ID’s through its e*Index component. SeeBeyond’s eBusiness

suite is primarily focused on enabling information exchange among heterogeneous

systems, but the capability for joint task execution can be provided through the

application of CORBA, or COM+, or Java RMI capabilities. However, use of these

methods incurs the following previously mentioned limitations: 1) prior knowledge of

remote system methods required, and 2) modification to existing systems needed if they

are not originally developed in compliance with the specified standards. SeeBeyond does

provide computer-aid to translation development; however, it does not support definition

of an intermediate representation for translation, relying primarily on the point-to-point

conversion between specified source and destination representation pairs.

The fifth approach, the High Level Architecture for modeling and simulation,

while providing facilities for combining individual computer simulations into larger

simulations, does little to address most of the limitations identified with previously

evaluated approaches. HLA does present an object-oriented model for capturing data

shared between systems in a federation, increasing the developer’s visibility of system

interaction. It also prescribes a publish-subscribe approach to data sharing, requiring

interconnections between components be established only when one system has data of

interest to another (or is interested in data from another system). The two primary

limitations of the HLA are its capability for information exchange only, and its failure to

address the possible heterogeneities among federate models of shared data. The

 86

prohibition of direct interaction between federates and the lack of behavioral information

in the Federation Object Model (FOM) precludes the use of the HLA for joint task

execution. Leaving the burden of attribute and parameter interpretation on the federates

and failing to provide facilities in the Object Model Development Tool to facilitate

correlation of models or development of translations between different models limits

HLA’s support for data exchange.

Finally, the sixth approach, while not providing a distributed computing facility

such as that offered by CORBA, COM+, or J2EE, or an architecture for combining

independently developed systems such as that presented by SeeBeyond’s integration suite

or HLA, XML does provide support for achieving interoperability among independently

developed systems. Of the six approaches presented, XML offers the greatest support for

heterogeneity resolution, addressing, at least partially, five of the eight classes of

heterogeneity defined in Section II.A.2. In addition, there are tools available that aid in

the creation of XSLT stylesheets used for resolving heterogeneities of structure and

meaning between application data models. Finally, XSLT can be applied using a

wrapper or middleware-based approach, reducing the requirement for system

modification during heterogeneity resolution. XML defines a mechanism for data

definition and organization; it does not provide a method for remote invocation of

methods between applications. Therefore, its support for heterogeneity resolution is

limited to the exchange of information between applications. In addition, XML also

shares some of the limitations found in the other approaches. These include failure to

address the full spectrum of heterogeneities, lack of facilities for correlating different

models of the same real-world entity, and only partial support for federation extensibility.

Common limitations of these methods include 1) lack of computer aid for

determining correspondence among different models of real-world entities involved in

system interoperation; 2) advanced knowledge of remote system methods required in

order to access their functionality; 3) modification to an existing system required to

utilize the methodology if the system is not developed in compliance with the methods’

requirements; 4) no support for an intermediate representation definition, resulting in the

use of point-to-point conversions between representations requiring n(n-1) translations

 87

for a federation of n systems; 5) limited capability for application of computer aid for

translation development. The Object-Oriented Method for Interoperability (OOMI)

presented in the following chapters of this dissertation addresses these limitations.

 88

III. THEORETICAL FOUNDATION FOR COMPONENT SYSTEM
OBJECT CORRELATION

Fundamental to the resolution of heterogeneity among a federation of

independently developed systems is the identification of the real-world entities that

reflect the information and operations to be shared among systems. While the

information that a system wants to share with other systems is contained in the external

interface of the component system, identifying the real-world entities involved in the

interoperation between systems is not simply a matter of identifying the classes defined

in these interfaces. Because of potential variations in what different component systems

might view as important to model about an entity and in how that information might be

represented, the interoperability engineer must first identify corresponding information

on the different systems in the federation. Correlation of classes representing the same

real-world entity must be accomplished in order to enable information and operation

sharing.

This class correlation problem is similar to the query/candidate-component match

problem faced in retrieving software components for reuse [Ste91, Ngu95, GNM96,

Her97, ZW93, and ZW95], and the attribute correspondence problem encountered during

heterogeneous database integration [CHR97, HM99, KM98, LC94, and LC00]. The

approaches for solving the correlation problem in these various domains are similar. I

review a number of these approaches as background for providing an understanding of

the class correlation method chosen for constructing an interoperability model for a

federation of heterogeneous systems, the Federation Interoperability Object Model

(FIOM). Prior to this review, I first present an overview of the measures of performance

used to evaluate candidate correlation methods.

A. CORRELATION MEASURES OF EFFECTIVENESS
Salton and McGill, as cited in [Ste91], point out six evaluation criteria for

measuring the performance of information retrieval systems: precision, recall, effort,

time, presentation, and coverage. Foremost among the effectiveness measures are

precision and recall. In the class correlation context, precision is defined as the ratio of

 89

the number of classes correctly correlated and the total number of classes correlated.

Recall is defined as the ratio between the number of classes correctly correlated and the

number of correct correlations possible. Recall indicates how effective the search is-

what percentage of existing actual correspondences is found. Precision is an indicator of

search accuracy- of the correspondences returned how many are correct. [LC00]

Effort refers to the amount of physical or intellectual labor required to correlate

different classes that represent the same entity in the real world. The required correlation

effort can be used to compare various correlation algorithms.

Time generally refers to the elapsed CPU or clock time required for evaluating

classes to determine if a correlation exists. Time can also serve as an indirect

measurement for the correlation effort required.

Presentation refers to the method in which correlation results are provided to the

user. Is a ranked list of potential matches provided? Can the results be integrated with

other tools attempting to solve the interoperability problem? The answer to these and

related questions can be used to discriminate between potential correlation methods.

Coverage is a measure of the number of relevant classes that are contained in the

external interface of component systems of the federation. In order for two systems to

interoperate, a sharing of information and/or operations must occur between the systems.

If the information or operations to be shared are not defined in the external interfaces of

the two systems, interoperability cannot be achieved.

These criteria are used to evaluate existing correlation methods to determine their

suitability for use in the Object-Oriented Method for Interoperability (OOMI) introduced

in Chapter IV. Data is not available for all of the correlation measures of effectiveness

on all of the correlation methods evaluated. Where available, measure of effectiveness

data is provided for comparison of the data correlation methods discussed below.

B. DATA CORRELATION METHODS

 90

Whether retrieving information from a database, locating re-usable components

from a software repository, or identifying sharable information between systems in a

federation, these applications share a common underlying problem. That problem is how

to identify correspondences between information in order to solve the overarching

retrieval or identification problem. Methods for establishing information correspondence

can be classified as classical, specification-based, or involving Artificial Intelligence (AI)

[Ngu95]. An overview of some of the more relevant data correlation methodologies is

provided as background for the method chosen for use in the OOMI.

1. Classical Approaches
Classical approaches include browsing, keyword matching, and multi-attribute

search. A prime advantage of the classical approaches includes the availability of the

information required for correlation, the relative simplicity of the different approaches,

and the user’s resultant ability to understand the use of the prescribed methodology. A

disadvantage of the classical approaches is that they do not take component behavior into

consideration, and subsequently don’t achieve high values for precision and recall.

a. Browsing
A browser is a general-purpose tool for looking through collections,

categories, or hierarchies of components. In its most familiar context browsers are used

to manually trace through interconnected data sources on the World Wide Web. In our

context of trying to determine the interoperability classes for a system federation, a user

could utilize a browser to examine the component systems’ external interfaces in order to

identify correspondences between system classes. Browsers are commonly used and

offer several advantages- 1) they are easy to understand and to use; 2) they enable a user

to control the direction of search over an entire collection; and 3) they enable a user to

determine dependencies between objects. However, browsers do present several

disadvantages as well. First, a browser is a manual approach that is not adaptable for

automatic data element correlation. Second, unless a user knows where to look for

elements to correlate, misses will be likely. Third, the user won’t know when to stop

looking. Fourth, the user must manually inspect data elements to determine if they

correspond. Finally, browsers are not suitable for large-scale repositories. [Ste91]

b. Keyword Matching
Keyword matching is a familiar approach used as the foundation for most

commercial search engines. The user enters a keyword or series of keywords pertinent to

the information he is trying to locate and the search engine returns all items containing

some variation of the entered keyword(s). The chief advantages of keyword search are its

easy implementation and conceptual simplicity for the user. Its primary disadvantage is
 91

that the number and choice of keywords is crucial to success. It often takes an

experienced user to attain the desired results. As the size of the software base increases,

the effectiveness of keyword search diminishes. A tradeoff exists regarding the number

of keywords used in a query- a large set of keywords results in a loss of recall, whereas a

small set of keywords results in a loss of precision. [Her97]

c. Multi-Attribute Search
Multi-attribute search includes the faceted classification method of Prieto-

Diez [Pri91] and the full-text information retrieval capability used by the Personal

Librarian (PL) tool employed by MITRE’s DELTA (Data Element Tool-Based Analysis)

methodology [BFH+95]. The principle advantage of multi-attribute search is that the

additional attributes used provide more information for retrieval than would be available

in a pure keyword search. Its primary disadvantages are that information classification

and storage are dependent on the author and/or library administrator, and that different

people may classify the same information differently, reducing the effectiveness of the

search.

(1) Faceted Classification. The typical classification scheme is

enumerative- all possible classes are predefined and a component is classified according

to the nearest fit to one of the predefined classes. In Prieto-Diaz’ faceted classification

scheme [Pri91], classes for categorizing a component are synthesized by selecting

predefined keywords from a number of faceted lists.

A facet is formed by grouping terms into related subject areas. A

faceted scheme may have several facets. To classify a component using the faceted

scheme, one would select from each facet the term that best describes the component.

Null values are allowed if no term in a facet describes the component. The resultant list

of terms is the facet descriptor for the component.

For example, to classify the title “Structured Systems

Programming” using a faceted approach and the following predefined facets,

Entities- {designs, programs, structures, systems}

Activities- {analysis, design, evaluation, programming}

 92

would result in the descriptor {systems, programming} for our example title.

As depicted in Figure III-1, Prieto-Diaz’ faceted approach consists

of three principle elements- the faceted scheme, a thesaurus, and a conceptual distance

graph. For each software component σ, a descriptor dσ is composed consisting of ordered

terms (Tij) from each facet. The thesaurus provides a list of synonyms Sijk for each

concept term Tij. The conceptual distance graph is used to measure similarities among

terms. Two or more facet terms are related to general concepts, called notions, through

weighted edges. Similarity between terms is computed by measuring the closest path

between them. The conceptual distance is equal to the path weight between two terms.

Figure III-1. Three Elements of Faceted Approach (From [Pri91])

During component retrieval, a query descriptor is created by

selecting valid terms from the faceted scheme to describe the component desired.

Concept ambiguity is reduced through use of a thesaurus. If there is no match for the

query descriptor, a new descriptor is created using closely related terms according to the

distances in the conceptual graph. A new search is then conducted using the modified

descriptor. Matches on the new descriptors will retrieve components that are closely

related to the component described by the original query descriptor.

Prieto-Diaz compared the recall and precision values obtained

using his faceted classification scheme on a prototype system with those of a retrieval

 93

system not organized by a classification scheme. His experiments revealed a four-fold

improvement in the precision/recall ratio for the prototype using faceted classification.

Although faceted classification offers improvements in precision

and recall over non-faceted retrieval systems, it does have its limitations. Chief among

these limitations is the requirement for a knowledgeable librarian to classify stored

components and maintain the software repository. This includes update and maintenance

of the classification schemes and thesauri. Inherent in the approach is that classification

is a largely manual, labor-intensive methodology. A final shortcoming is that faceted

scheme effectiveness is limited for component retrieval from broad, heterogeneous

collections. Its capability is geared more toward domain-specific collections where the

number of facets and terms can be minimized. [Pri91]

d. Classical Approach Applicability to Interoperability Correlation
Problem

The advantage of such classical approaches as browsing, keyword

matching, and multi-attribute search include the availability of the information required

for correlation, the relative simplicity of the different approaches, and the

understandability of the prescribed methodology. The main disadvantage of the classical

approaches is that they do not take component behavior into consideration, and

subsequently don’t achieve high values for precision and recall. Of the three approaches,

keyword matching is believed to have the greatest applicability to the interoperability

correlation problem. Section VI.B discusses incorporation of keyword matching into the

OOMI IDE.

2. Formal Specifications
Formal specification approaches include syntax-based methodologies, semantics

based techniques, and approaches using a combination of both syntactic and semantic

methods. The main problems with the use of formal specifications deal with the practical

problems of writing component and query specifications and the time required to conduct

semantic matching. Specification writing involves formal techniques and notations that

the average designer may not be familiar or comfortable with, although the techniques

involved generally only require a foundation in discrete mathematics. Time problems

 94

stem from the fact that semantic matching techniques require the use of computationally

intensive theorem proving approaches.

a. Syntax Based Approach
The syntax based approach attempts to match a query to a candidate

component based on a components’ composition and structure. Zaremski and Wing

introduced an approach that uses syntax information in terms of a component’s signature,

to locate reusable components from a software base [ZW93].

(1) Signature Matching. Zaremski and Wing [ZW93] address

the correlation problem in the context of software reuse. They introduce signature

matching as a means of locating reusable components in a library for subsequent retrieval

and adaptation for use in a desired application. They consider two kinds of software

components, functions and modules, for which they define the type and degree of

signature matching expected for the reuse context.

A signature for a function is its type. A function type can either be

a type variable or a type operator applied to other types. Type operators are either built-

in operators or user-defined operators. When searching a library for a function that

satisfies the needs of a specified application, the system designer defines a query in terms

of the types he requires the function to contain. Matching a user-defined query to a

function in the library is done based on a comparison of the types defined for the query

and the types defined for a library function.

For function matching, Zaremski and Wing provide a definition for

an exact match between a query and a library function as well as several relaxations that

can be used to determine a partial match when an exact match doesn’t hold. One type of

relaxation is provided in terms of the generalization/specialization of a query where either

a more general library function can be found for the query, or a function that is a

specialized version of the query can be found in the library, respectively. Other

relaxations allow matches to occur between a query and a library function where the

order or form of a type expression defined for the function is different from that of the

query. Relaxations can be combined to increase the set of library functions retrieved by a

query.

 95

Function mapping serves as the basis for providing matching

between modules. The signature used for module matching is an interface, consisting of

a multi-set of user-defined types and a multi-set of function types. For a match between a

query and a library module to occur, there must be a correspondence between the query

function types and the library module function types. In practice it is sufficient to check

to see if function types match- if function types match, the modules must match- there is

no need to check user-defined types. This correspondence can be either an exact match

or a partial match, where not every function in the query matches every function in the

library module. In addition, for each function match, the match can either be exact or

relaxed as previously discussed.

The authors’ work provides a set of primitive function matches that

can be combined to form the most practical types of matches between a query and a set of

library functions or modules. The basic technique is applicable to finding both functions

and modules to match a user’s query. Although their work is principally directed toward

the retrieval of reusable components from a library, the same principles may be used in

other applications as well, such as consolidating heterogeneous databases or resolving

modeling differences in a system federation. [ZW93]

b. Semantics Based Approach
Semantics based approaches attempt to use behavior to establish

correlation between elements. Behavioral information can be captured in terms of a set

of conditions an element must satisfy or a set of equations describing the dynamic

behavior of a component or operation. Semantics based techniques can be utilized alone

or in conjunction with syntactic based methods in a multi-level approach to solving the

correlation problem.

 96

(1) Specification Matching. As discussed in [ZW93], syntactic

information may be used to provide an idea of whether two components are related.

However, understanding the dynamic behavior of a component, or its semantics, is key to

determining whether a component provides the functionality required for use in a

specified context (reuse problem), or whether two elements in a database refer to the

same real-world concept (database integration problem), or whether objects may be

shared between systems in a federation (interoperability problem). Zaremski and Wing

extend their syntax-based correlation efforts to address the use of semantics for

determining if two software components are related. Their specification matching

process supplements their signature matching process in determining the relationship

between two components.

In [ZW95] the authors address specification matching as relates to

both functions and modules. The dynamic behavior of a function is characterized in

terms of pre- and post-condition specifications for each function asserted using first-order

predicate logic. A match between two functions is determined by evaluating the logical

relationship between the pre- and post-condition specifications for the two functions.

There can be varying degrees of matching, from exact matches where the pre- and post-

conditions of the two functions are equivalent, to implied matches where if the pre- and

post-condition of one function hold (are true), then the post-condition of the other

function holds also.

Function matching is defined in terms of pre/post match or

predicate match. In pre/post match the pre- and post-conditions of two functions are

compared; predicate match also involves the relationship between the pre-condition and

post-condition for each function. For predicate match, satisfaction of the pre-condition

for a function implies satisfaction of the post-condition for the function whereas in

pre/post match this implication does not necessarily hold.

For pre/post matches, the strictest match is exact pre/post match;

for this type of match the pre-conditions and post-conditions of the two functions are

equivalent. In terms of measures of effectiveness, exact pre/post match results in the best

values for precision (function satisfying exact pre/post match with a query exhibits the

same dynamic behavior specified by the query). However exact pre/post match performs

poorly in terms of recall (functions that may exhibit the desired dynamic behavior under

specified conditions may be overlooked).

The next strictest match is plug-in match: if the pre-condition of

the first function is satisfied, then the pre-condition of the second function is also

satisfied, and if the post-condition of the second function is satisfied then the post-

condition of first function is also satisfied. Plug-in match provides increased recall over

 97

exact pre/post match; it will return functions that can be “plugged-in” for another

function- as long as the pre-conditions of the original function holds, then a plug-in

replacement will be guaranteed to meet the post-condition of the original function.

Following plug-in match in terms of relaxations is plug-in post

match: if the post-condition of the first function is satisfied, then the post-condition of the

second function would also be satisfied for functions meeting plug-in post match. Plug-

in post match again increases recall; as long as the post-condition of the plug-in

replacement holds, then the replacement will be guaranteed to meet the post-condition of

the original function. Finally, the weakest match criterion is weak post match: if the pre-

and post-condition of a matched function are satisfied, then the post-condition of the

original function will be satisfied.

For predicate matches, the strictest match is exact predicate match:

the predicates for two functions are logically equivalent. Exact predicate match is also

less strict than exact pre/post match. The next strictest predicate match is generalized

match; generalized match allows the specification of a matched function to be more

general than the function being matched. The least strict predicate match is specialized

match; specialized match allows the specification of a matched function to be more

specific than the function being matched.

Determining a match between modules is based on the function-

match foundation. There are two types of module matches- exact module match and

generalized module match. For exact module match the number of functions in each

module must be the same. Each function in a module must match one and only one

function in the other module being compared using one of the function matches defined

above. Generalized module match allows one module to match a subset of another

module where, for the subset of functions matched, there is a one-to-one relationship to

the functions of the other module in terms of one of the above function matches. [ZW95]

c. Approach Using Component Syntax and Semantics

 98

Steigerwald, Nguyen, Herman, and Goguen et al. used a combination of

syntactic and semantic search techniques for addressing the software component retrieval

problem. Steigerwald [Ste91] introduced the use of algebraic specifications for defining

the syntax and semantics of components in a software base in order to facilitate

automated retrieval using a similarly specified query as the search key. His query by

consistency method was extended by Nguyen [Ngu95] and further described by Goguen

et al. [GNM96], resulting in a multi-level filtering approach to the software component

search problem. Herman [Her97] further improved Nguyen’s semantic matching

techniques, resulting in an increase in search precision without a loss of recall.

(1) Query by Consistency. Steigerwald [Ste91] takes a formal

specification approach to retrieving source code modules from a component re-use

library. His approach uses both syntactic information derived from a module’s

specification, and semantic information describing the dynamic behavior of a module, to

retrieve components based on a user’s query. Syntactic and semantic information are

provided in terms of a specification written using Luqi’s Prototype Specification

Description Language (PSDL) [LBY88] augmented with an algebraic specification

written in OBJ3. OBJ3 is an order-sorted-logic based functional programming language

introduced by Goguen [GW88].

In Steigerwald’s approach, reusable components are maintained in

a data store together with a PSDL/OBJ3 specification defining the syntax and semantics

of the component. A designer wishing to locate a component in the data store defines a

query that captures the desired component structure and behavior in terms of a

PSDL/OBJ3 specification. This specification serves as a key for locating corresponding

components from the data store. Both the query and library component specifications are

normalized, much as is done in hashing, in order to improve the efficiency of the search.

The normalization process is performed separately for the syntactic and semantic

information in order to optimize the search process. Syntactic normalization is

performed using the component/query interface defined by the PSDL specification.

Semantic normalization transforms the signature and axioms in the OBJ3 portion of the

specification.

The syntactic and semantic normalization processes may proceed

in parallel. However, syntactic matching should precede semantic matching in order to

take advantage of the faster, less computationally demanding syntactic matching

algorithms to reduce the candidate pool. Then, the slower, more computationally intense

 99

semantic routines are used to further reduce the list of candidates and to rank order

potential query matches. Syntactic matching provides an advantage over semantic

matching in terms of speed and recall; however, semantic matching offers increased

precision in locating candidate components that satisfy a query.

Search for a component can be divided into two parts:

representation and search. Representation provides a model of the component sought in

order to make locating the desired component easier. Search algorithms exploit the

component representation to facilitate locating the component. A tradeoff exists between

representation and search- the more sophisticated the representation the easier the search

and vice versa.

The normalization process is used to provide the representation

used for search. The ideal normalization process “would transform the axioms of two

semantically equivalent objects into syntactically equivalent forms” [Ste91, p.35]. Since

the axioms used to describe the semantics of a component are provided in terms of a

formal language in the author’s approach, it is possible, using semantics preserving

transformations, to automatically rewrite a set of axioms to an alternative form with the

same meaning. The ideal approach would apply transformations to both the query and

library components resulting in a normal form, which could then be compared for

equivalency. However, due to infinite variations possible in expressing component

semantics, even if you could expect to get two semantically equivalent specifications

syntactically close, you would need help from a matching algorithm to determine if the

two were in fact equivalent.

The search process involves the use of theorem proving techniques

to show that a query specification and component specification are equivalent. The

formal specification for a query and a component contain a set of axioms describing the

behavior of the query or component. Taken together, the axioms of the query constitute a

theory for which theorem-proving techniques can be used to show equivalency with a

candidate component. However, this can be very difficult to do automatically in the

general case; in addition, the process is slow and not guaranteed to terminate.

 100

Steigerwald proposes a two-phased approach to reusable

component retrieval. First, in the syntactic search phase, a comparison is made between

the numbers and types of parameters found in the PSDL specification for a query and

those for a candidate component. This information is used to quickly rule out

components that cannot possibly satisfy the query. The author provides a set of simple

tests that can be used to eliminate components in the software base as possible matches

for a query. Examples of the tests include:

• If the number of input parameters in a query is not equal to the number of input

parameters in a candidate component, then the component can be eliminated from

consideration.

• If the number of output parameters in the query is greater than the number of

output parameters in a candidate component, then the component can be

eliminated from the search.

• If the query has state variables defined, but there are no state variables in the

candidate component, then the component can be eliminated as a possible match.

[Ste91]

These tests provide the necessary conditions for match between a component and a query,

however, they are not sufficient to determine whether a component is a syntactic match

for a query.

The second phase, the semantic search phase, uses a formal

specification of the syntax and semantics for both the components in the software base

and the queries used to retrieve a desired component. The specification is provided using

the OBJ3 algebraic specification language. Called “query by consistency” (QBC), the

semantic search phase compares the specifications of a query and a component in the

software base by evaluating the equivalence of reduced algebraic terms taken from the

query and candidate component specifications.

Given a query specification, QBC first builds a set of example

terms from the specification signature. Then, using axioms in the query, the example

 101

terms are reduced to normal form. Term reduction involves application of the rules of a

specification’s axioms to a term until no further reductions are possible, resulting in

normal form for the term. Similar reduction is performed on terms for components in the

software base. Finally, the results of the reduction are compared in order to eliminate

some candidate components and to rank order those that remain.

QBC uses Prolog as the tool to find the mappings between a query

and a candidate component. Each operator definition in the signature of a query and

candidate component is transformed into a set of Prolog predicate expressions. Predicate

expressions derived from the component specifications are treated as Prolog facts during

the mapping phase and predicate expressions from the query specification are combined

to form a Prolog rule. Prolog is then used to provide a mapping from the query rule to

the candidate component. With some query/component combinations, many mappings

may be possible. The QBC algorithm must check every possible mapping- a task that is

worse than exponential in the worst case.

Following the generation of mappings between a query and a

candidate component, each mapping is evaluated to determine a score by which the

potential query/candidate component matches are ranked. In order to evaluate each

mapping, a test set is generated from the signature defined for the query. The test set is

used to build an Input/Output (I/O) list. The I/O list consists of a list of input terms that

represent the query’s operators and arguments for those operators, and a list of output

terms that are the result of reduction of the input terms to normal form using the axioms

of the query.

The names of operators and sorts and the positions of parameters

in the signature of the query will most likely be different than the corresponding

operators, sorts, and parameters in the candidate component. Therefore, the terms must

be transformed to the candidate component’s domain using one of the mapping functions.

The I/O list term output comparison will be performed in the domain of the candidate

component. Therefore it is necessary to transform both the inputs and the outputs to the

component domain.

 102

Next, the reduced input and the transformed query domain output

are compared using a theorem proving method referred to as inductionless induction. By

using a sequence of rewrite rules the query input and transformed query output are

compared to determine if they are behaviorally equivalent. A simple scoring mechanism

is used to tally the results of the inductionless induction comparison for a particular

mapping. The score given to a particular map is the ratio of the number of I/O pairs that

are behaviorally equivalent to the total number of I/O pairs reduced. From these scores

potential mappings between a query and a list of candidate components can be ranked.

Steigerwald does not provide any values for measuring the

effectiveness of his QBC method in retrieving components from a software base. He

cites the unavailability of a suitably populated library from which to determine

meaningful measures. However, in the next review, Nguyen does provide a comparison

of his method to Steigerwald’s QBC for a small sample software base.

(2) Multi-Level Filtering. As initially reported by Nguyen

[Ngu95] and reiterated by Goguen et al. [GNM96], Steigerwald’s query by consistency

method had several limitations. First, his syntactic matching process is limited to total

syntactic matches (no partial matches allowed) and the use of unparameterized

components. Further elimination of components not satisfying the query could be

accomplished if additional information besides the number of inputs, outputs, and state

variables for a component were considered. Second, the use of Prolog to find mappings

between the signature of a query and a candidate component is computationally

expensive- the time required to determine all possible mappings could be greater than

exponential. Third, the semantic basis of QBC is not well developed. Evaluating

patterns with variables gives limited information about the semantic satisfaction of a

syntactic match. In his approach it is possible to have semantically equivalent

specifications for which pattern evaluation would give conflicting answers, giving the

appearance that a query and a component are not semantically equivalent. Finally, he

provides limited support for generic components- the system does not have the ability to

extract features from a user query and use them to instantiate a stored generic component

in order to perform QBC. Generic parameters must be mapped to predefined sorts.

 103

Nguyen introduced a multi-level filtering approach to software

component search that integrates keyword, syntactic, and semantic matching techniques.

Nguyen’s multi-level filtering methodology provides the following improvements over

Steigerwald’s approach: 1) it provides a ranking of software components that potentially

satisfy a query, therefore enabling partial query matches; 2) it uses a multi-level filtering

approach using both syntactic and partial semantic information about components to help

eliminate obvious mismatches; 3) it focuses on comparing formal specifications of

components using ground equation test cases as queries, a less computationally expensive

process than Steigerwald’s use of Prolog; 4) it provides a method to automatically

translate standard programming notation into the formal specification notation used for

queries (vice having to program queries using formal specification notation); 5) it allows

generic modules in the software base; 6) it addresses the structuring of the software base

to increase efficiency of the search; 7) it allows user’s to provide the selection criteria for

controlling the search and displaying retrieved components; and 8) it provides user

information to aid query reformulation for improving subsequent searches if no match to

a query is found [Ngu95, GNM96].

Nguyen’s software component search methodology acts as a series

of increasingly stringent filters applied to a list of candidate components with regards to a

user query. Components are first filtered using signature matching by comparing the

signature of a query to the signature of components in the software base. This is done by

mapping the type and function symbols of the query into corresponding type and function

symbols of candidate components.

After signature matching, semantic matching is applied to rank

components on how well they satisfy the equations in the query. In the semantic

matching process, the query is used to derive equations that are logical consequences of

the query specification. These equations are then translated using previously developed

signature matches to a set of equations whose proof is attempted using the candidate

specifications. Candidate components are then ranked according to the success of the

candidate specification proof process.

 104

The syntactic matching approach uses three levels of syntactic

filtering: 1) profile filtering is used to partition the software base, as an aid to signature

matching, 2) keyword filtering reduces the candidate component set, and 3) signature

matching “finds the maps that translate the type and function symbols of the query into

the corresponding type and function symbols of the candidate components” [Ngu95

p.15].

For signature matching, each component in the library has an

associated algebraic specification consisting of a signature for the component and a set of

equations used to specify the component’s behavior. The component signature consists

of a set of sorts (types) defined for the component and a set of functions on those types.

The set of equations for a component specifies properties that the functions of the

component should satisfy. Signature matching attempts to find a mapping between the

sorts and functions of a query and the sorts and functions of a library component.

The effort required for matching the sorts and functions of a query

to those of a candidate component is computationally expensive. Profile matching is

introduced as a means for reducing the library component search space in order to speed

up the signature matching process.3 The number and organization of sorts in a

component’s functions are used to define a profile for each operation. Nguyen defines an

operation profile as:

“1. The first integer is the total number of occurrences of sorts.

2. If the total number of sort groups, N, is greater than 0, then the second to

(1 + N)th integers are the cardinalities of the sort groups, in descending order.

3. The (2 + N)th integer is the cardinality of the unrelated sort group.

4. The (3 + N)th integer is:

0 if the value sort is different from any of the argument sorts; and

1 if the value sort belongs to some sort group” [Ngu95 p.20].

3 Steigerwald’s approach looked at all possible matches between a query and a

component signature; Nguyen introduces profile matching in order to reduce the number
of possible mappings that must be evaluated by signature and semantic matching
algorithms.

 105

The composition of all the operation profiles for a component

provides a profile for that component. The profiles for a group of components in a library

are used to separate the library into partitions of components containing the same profile.

By comparing profiles for a query and a component it can be determined whether the

component matches the query. The degree of match between a component and query is

given as a ProfileRank, which provides a numerical value based on the number of

operational profiles for a query that match the operational profiles for a component, given

as:

ProfileRank(BQ, BC) = |BQ ∩ BC| / |BQ|

where BQ represents the profile for a query and BC a component profile. Again,

ProfileRank provides a measure of recall for the profile matching algorithm.

The keyword rank function is used to measure how close the

keywords of a query, KwQ, are to the keywords of a component, KwM:

KeywordRank(KwQ, KwM) = |KwQ ∩ KwM| / |KwQ|

The keyword rank function measures recall by determining the ratio of the number of

keywords present in both the query and a candidate component to the number of

keywords in the query.

Finally, the signature-matching algorithm is performed on only

those components in the partition whose profile matches that of the query. Signature

matching determines how close the signature of a query matches the signature of a

component. The result of executing the signature matching algorithm for a candidate

component is a SignatureRank for the component, defined as the ratio of the number of

elements in the signature of the component that match the signature of the query to the

number of elements in the signature of the query.

SignatureRank (V, Q) = |V.Σ| / |Q. Σ|,

where “Q. Σ is the signature of the query and V. Σ is the subsignature of Q. Σ that is

actually matched by V” [Ngu95 p.28].

 106

The choice of software base components that match a query can be

further refined using semantic filtering. A semantic validation procedure tests equations

from the query for satisfaction in the candidate component specification. First, a set of

ground equations is formed from the query specification. Ground equations, that is

equations whose terms have no variables, are used to reduce the complexity required for

checking candidate component matches to a query. Then, the query ground equations are

tested for satisfaction in the candidate component specification as follows. First, the

query ground equations are translated using the signature match information between the

query signature and candidate component signature determined during the signature

match process. Then, the translated ground equations are evaluated against equations in

the candidate component specification. If the translated ground equations are satisfied,

i.e., evaluation of each equation results in the identity relation, then the candidate

component satisfies the query.

Using the results of the semantic validation procedure, a ranking

can be computed for candidate components in the software base that satisfy a query. The

ranking is computed on an operation by operation basis, based on whether a signature

match is defined for the operation and if so whether the semantic validation procedure

results in a successful match between the query and the component operation. The

ranking takes into consideration the possibility of partial satisfaction of a query’s ground

equations by a component. Finally, the SemanticRank of the component is computed as

the sum of the ranking for the operations defined for the component. Then, given the

SemanticRank of a component, the author’s compute its overall ComponentRank as

follows:

ComponentRank = KeywordRank * ProfileRank * SignatureRank * SemanticRank

Thus, the designer is provided an ordered list of components from which to evaluate for

possible application in his implementation.

Nguyen provided an evaluation to compare the performance of

Steigerwald’s signature-matching method to his approach that added profile matching to

the signature matching process. From his limited evaluation of matching a query against

a library of six candidate components, he reported a fifty-six-fold improvement in the

 107

time required for semantic matching with profile matching included vice that required

when the algorithm did not include profile matching.

Nguyen also performed an evaluation of the precision and recall

values attainable when searching a sample library for components matching a given

series of queries. When searching for components that were an exact match to the given

query, his approach yielded very high precision values (1.0 average) but low recall

numbers (average of .58). When the search was expanded to include partial matches as

well, recall values improved to an average of 1.0 while precision values fell to .36 on

average. A third scenario, which he termed the “Medium KPS scenario”, provided more

balanced precision and recall results, resulting in average values of .81 and 1.0

respectively. Nguyen found that his exact match search compared favorably with Prieto-

Diaz’s faceted approach [Pri91] for precision but was outperformed slightly for recall.

However, he found that his Medium KPS scenario had a better recall performance but a

lower precision than the faceted approach [Ngu95].

(3) Improved Multi-Level Filtering. Nguyen’s multi-level

filtering approach combines keyword matching, syntactic matching and semantic

matching to retrieve reusable components from a software base. Syntactic matching is

further decomposed into two phases: profile filtering and signature matching. Herman

[Her97] introduces improvements to the resolution of syntactic profiles in order to

increase precision during profile filtering, without a loss in recall. In addition he

presented improvements to the internal representation of syntactic profiles in order to

improve the time and space requirements for profile representation. Finally, he provided

improvements to the signature matching process that reduced the time required to find

valid signature maps.

Herman’s multi-level filtering model is presented in Figure III-2.

The multi-level filtering process consists of two main activities: syntactic matching and

semantic matching, with syntactic matching further broken down into profile filtering and

signature matching. The purpose of the multi-level filtering approach is to eliminate as

many candidate components in response to a query using earlier, less computationally

expensive approaches before producing a ranked set of potential matches using the

 108

semantic matching process. He also enables manual inspection of the intermediate

results in order to further eliminate candidates from consideration.

Figure III-2. Multi-level Filtering Model (From [Her97])

Herman proposed improvements to the definition of an operation

profile defined by Nguyen in order to increase the precision offered by his approach. His

proposal included improvements to both the resolution of the profile and the space and

time required to store a profile and search through a collection of profiles to determine a

match to a query.

Improvements in profile resolution provide the ability to better

distinguish between syntactically similar software components. Herman offered two

approaches to increasing the resolution of a component profile: 1) increase the number of

possible discriminates for a profile property and 2) increase the number of properties

included in a profile.

Herman’s first improvement to Nguyen’s profile definition was to

modify the value of the last integer in the profile to represent the number of occurrences

of the value sort in the operation’s signature. Nguyen had defined the last integer as a

true/false indicator of whether the value sort was also included as an argument sort for

the operation. His second improvement was to include an additional property in the

profile to capture the number of times the type sort of a component (assuming the

component represented an abstract data type) was present in an operation. The third

profile resolution improvement was the addition of a count of the frequency of

occurrence of five predefined sorts (boolean, character, string, integer, real) in the

 109

signature of an operation. In summary, Herman’s improvements resulted in the following

update to the profile definition provided in [Ngu95]:

1. The first integer is the total number of occurrences of sorts.

2. If the total number of sort groups, N, is greater than 0, then the second to

(1 + N)th integers are the cardinalities of the sort groups, in descending order.

3. The (2 + N)th integer is the cardinality of the unrelated sort group.

4. The (3 + N)th integer is the number of occurrences of the type sort in the

operation’s signature (for abstract data types).

5. The (4 + N)th through (8 + N)th integers are the number of occurrences of the

predefined sorts (boolean, character, string, integer, real) in the operation’s

signature.

6. The (9 + N)th integer is the number of occurrences of the value sort in the

operation’s signature. [Her97]

In addition to the profile resolution improvements offered by

Herman, he also enhanced the profile storage and retrieval efficiency through two

measures: 1) the use of a large integer to represent a profile and 2) the use of a profile

lookup table for storing component profiles. The large integer representation uses the

digits of a large (double precision) integer to represent an operation profile vice the set of

integers used by Nguyen. The profile lookup table assigned a unique integer lookup ID

to an operation profile so that a component profile could be represented as a collection of

lookup ID’s vice a multiset of operation profiles, each of which consists of a sequence of

integers.

In addition to providing syntactic profile resolution enhancements

and time and space improvements in the storage and use of syntactic profiles, Herman

reduced the time required to find valid signature maps by improving the signature

matching process. These enhancements include: 1) ordering profiles lexicographically to

help constrain the search during operation matching; 2) reduction of the search space by

attempting to match operation outputs before considering input sorts; and 3) using the

 110

preservation rules of predefined types to reduce the number of input sort permutations

that must be considered.

By ordering profiles lexicographically, his approach attempts to

match the sorts of smaller operations before matching the sorts for larger operations.

This potentially results in an improvement of the matching process because smaller

operations constrain the number of matching possibilities and therefore can contribute to

an early reduction of the search space.

By matching output sorts prior to input sorts, the numbers of input

sorts that have to be matched in an operation are reduced. If an output sort for a query is

matched to a specific output sort in the candidate component, then that matching must

hold for the query sort when used as an input parameter as well. Operations where the

matching does not hold can be eliminated from consideration. In addition, once a query’s

output sort is matched to the output sort of a candidate, that sort cannot be matched to a

different output sort in the candidate. This further reduces the search space.

Finally, the type preservation rules of predefined types enables

further pruning of the number of potential matches that must be considered by the

signature matching and semantic matching routines. The type preservation rules require

that in order for a query operation to match a candidate component operation, the input

type of a query must be either the exact type or a subtype of the input type in the

candidate, and the output type of the query must be either the exact type or a supertype of

the output type in the candidate. Failure to meet this requirement will eliminate a

potential match from consideration.

Experimental validation of Herman’s suggested improvements

supported his hypothesis in four areas: 1) software base resolution; 2) profile filtering

performance; 3) profile improvements’ impact on signature matching; and 4) signature

matching performance enhancements. A basic premise of the recommended profile

enhancements is that increasing the profile resolution will enhance the resolution of the

software base by increasing the number of partitions in the software base and

consequently reducing the number of components per partition. As a result, query match

precision should increase without reducing recall. Herman’s measurement of the number

 111

of software base partitions shows a 65% gain in the number of partitions due to

implementation of his recommended profile enhancements.

As a measure of profile filtering performance, Herman

hypothesized that his recommended profile enhancements would result in a reduction in

the number of components returned as candidate matches to a query. Experimentation

validated this hypothesis, resulting in as much as a 79% decrease in the number of

returned components when all three profile enhancements were implemented.

A concise quantification of the effect profile improvements had on

signature matching was not made in the thesis. However, a look at one query match

attempt showed that profile improvement implementation enabled a valid signature match

to be obtained where it was not attainable without the suggested profile improvements

and that generally, matches using the improved profile fared at least as good as without

the improvements.

An evaluation of the signature matching performance

enhancements was conducted by counting the number of nodes that passed or failed the

output matching and predefined type matching tests. Failed nodes represent nodes that

are pruned, so an increase in the number of failed nodes indicates improved signature

matching performance. Herman provided a measurement of the number of nodes that

passed and failed the enhanced signature matching tests for each of the various profile

resolution improvements. However, it is not possible to discriminate between failure

increases resulting from the signature matching enhancements and those resulting from

the profile resolution improvements. [Her97]

d. Formal Specifications Applicability to Interoperability
Correlation Problem

Zaremwki and Wing [ZW93, ZW95], Steigerwald [Ste91], Nguyen

[Ngu95], Goguen et al. [GNM96], and Herman [Her97] introduced the use of formal

specifications in an attempt to exploit behavioral aspects for correlation. As mentioned

earlier, the main barrier to the use of formal specifications involves the practical

problems of writing component and query specifications and the time required for

conducting semantic matching. Perhaps as a result of the difficulty involved in writing

formal specifications, the legacy systems targeted for integration generally lack any type

 112

of formal specifications for describing system behavior. However, type signatures are

generally available, and aspects of the syntactic matching parts of this group of methods

could be applied. On the other hand, the strengths of syntactic matching are not well

exploited in typical interoperability applications because the explicit type structures in

these applications are not very rich- fields are usually limited to numbers and strings and

there is not enough structure to provide much discrimination between alternatives.

Therefore, in order to best take advantage of this approach for determining class

correspondence, formal specifications would need to be created for systems lacking their

use. The time and effort required to augment existing systems with formal specifications

describing their behavior would outweigh any savings gained from the introduction of

computer aid to the solution of the correlation problem.

3. Artificial Intelligence Approaches
In addition to the classical and formal specification approaches used for

establishing correspondences between data elements and for software component

retrieval, the use of artificial intelligence techniques have been applied to the correlation

problem. Two of the more promising methods investigated involve 1) the exploitation of

natural language information in correlating data elements, and 2) the use of neural

networks to learn the similarities among data given instances of that data.

a. Natural Language Techniques
Foremost among the natural language techniques is the use of full-text

information retrieval technology to extract syntactic and semantic information needed to

establish correspondence between data elements. When integrating software systems,

much if not most of the information required to use formal specification approaches is not

available for legacy systems. However, a good deal of syntactic and semantic

information is available in the component system data dictionaries and data description

languages as textual information. Full-text information retrieval technology can be used

to exploit the information contained in these documents for data correlation.

 113

(1) Full-text Information Retrieval. DELTA (Data Element

Tool-Based Analysis) [BFH+95] provides a methodology to correlate data elements in

existing legacy systems. The methodology involves the use of a set of prescribed tools to

perform the correlation. The approach is centered on the use of full-text information

retrieval technology and exploitation of the relationships between data elements. The

methodology outlines a bottom-up process whereby component system data elements are

correlated to corresponding data elements in another system or to those contained in a

pre-defined standard.

DELTA utilizes a step-by-step process employing a number of

commercially available software tools for inputting, organizing, searching, correlating,

and storing data. The first tool, a full-text information retrieval system called Personal

Librarian (PL), is used to match corresponding data elements in different systems. PL

uses information readily available from the legacy systems’ data dictionaries and

database tables to compare items between systems. In addition, DELTA exploits

relationships between data elements to help validate the correspondences returned by PL.

The relationships between data elements are captured in the form of IDEF1X (Integration

DEFinition [for information modeling] First Edition Extended) logical data models. For

the task of modeling the data, DELTA uses ERwin, one of several commercial off-the-

shelf (COTS) tools available for producing the IDEF1X models. DELTA also employs

commonly available personal computer (PC) office automation products such as

Microsoft Excel and Microsoft Word. Finally, PC Access Tool (PCAT), distributed by

the DoD, provides access to data elements currently being standardized by the defense

community.

The DELTA process consists of a sequence of four primary steps

used to correlate data elements between systems:

1. System metadata is gathered, organized, and reformatted in order to identify
the data elements to be reconciled for each system.

2. Data elements of one system are correlated with those of other systems or
with standardized elements.

3. Relationships between data elements are used to validate the data element
correspondences returned in the previous step.

4. A composite model of the federation data elements is created after
correspondences between data elements have been validated.

Data Extraction. There are a number of sources for obtaining a

system’s metadata, with the data dictionary and data definition language (DDL) being

two of the most common. The data dictionary should contain the data element name,

 114

data type, length, narrative description, and sample values for each data element. Data

element names and the tables in which they are found can also be easily extracted from

the system’s DDL. The DDL is used to define a database’s conceptual schema

containing the files, their attributes, and the types of those attributes comprising the

logical structure of the database [Gra87]. The system’s DDL may be more accurate and

up-to-date than the data dictionaries because they are extracted directly from the

operational system.

Source code may also provide information regarding a system’s

data elements. In addition, other sources for input data can include:

• Copies of major system displays or reports,
• Requirements documents,
• User manuals, and
• Database design models.

The system analyst extracts the data elements for the system from

the above listed metadata source documents. After extraction, the input data is

reformatted and reorganized prior to beginning the initial correlation step using the

Personal Librarian (PL) software. Reformatting removes extraneous material from the

data dictionary and DDL files and formats the information for input to PL.

Reorganization of the data involves sorting the data elements into subject categories

similar to the facets introduced by Prieto-Diaz [Pri91]. These subject categories are

referred to as basic concept areas (BCAs) in DELTA. The subject categories can be

ascertained either from the standard data element set being used or from review of the

data element’s system documentation.

Data Element Correlation. The correlation problem involves

taking each data element as it is represented in one of the systems and find the

corresponding data element in the standard model or in each of the other systems. The

difficulty in accomplishing this task is that each system uses different words and phrases

to express the same idea; thus data element names and definitions can vary between

systems. The Personal Librarian (PL) tool can be used to help locate potential matches,

even though the concepts are expressed differently.

 115

DELTA’s most fundamental contribution to data element

correlation is the use of full-text retrieval technology in its methodology. PL’s full-text

retrieval technology accepts natural language queries for locating corresponding data

elements. When provided a user entered query, PL provides a candidate list of

corresponding elements, ranks them, and displays a snapshot of the associated metadata

for each candidate, automatically “floating” those elements that most closely resemble

the query input to the top of the list. Parameters used by PL for its ranking algorithm

include the number of query words that match the item and how frequently each word

appears in the entire full-text database being searched. Because PL accepts natural

language queries, no special syntax or query language is required for query formulation.

While the authors did not provide any specific guidance for query formulation, similar

techniques to those used in keyword searches on most commercial search engines should

enhance search effectiveness. These include using key words or phrases from the data

dictionary or DDL that describe the element being matched, and first attempting the

search using a specific query to minimize the number of potential matches prior to

expanding the search with a more general query.

PL supports Boolean searching as well as operators that search for

words that are next to or near one another to be used in queries. In addition to using a

conventional query, PL provides an additional concept search feature. Concept search

functions similarly to Prieto-Diaz’ conceptual distance graph, returning terms similar to

the query in addition to those providing a specific match [Pri91]. For example, with a

concept search, entering the word cloud would not only return elements containing the

word cloud but would also return elements containing words such as forecast, wind,

ceiling and temperature that are related to clouds.

Additional features of PL allow you to define a thesaurus for

commonly used search words, to see a dictionary of all the words in a database, to match

words with similar spellings (fuzzy search), to use wild cards, and to reuse words from

previous searches. The inclusion of a thesaurus capability is particularly useful for

attempting to correlate data elements where acronyms and abbreviations are used.

 116

Correspondence Validation. To validate the correspondences that

are identified in the correlation process, a comparison must be made of the relationships

between the candidate entities and other entities surrounding them in their respective data

models. Only by ensuring that the entities are used in the same manner can the analyst be

assured of the correspondence between two data elements. The relationships between

entities are expressed in the form of an entity-relationship diagram used to model a

system’s data elements. DELTA uses the IDEF1X data-modeling standard to represent

the entity-relationship diagram. Logic Works’ ERwin tool provides the capability to

create, refine, and compare data models depicted in IDEF1X. These entity relationships

are then used to validate correlation assumptions and conclusions.

Composite Model Creation. After data element correspondences

have been validated against the IDEF1X entity-relationship diagrams using ERwin, a

composite data model for the correlated items can be manually created. Reasons for

creating such a composite model include the desire to consolidate multiple databases into

one or the need to identify standardized data element definitions across a number of

systems. Models are first reconciled within the active system to which they belong and

then to a core system (if defined). The composite model can be used to define a

“standard” representation for the real-world entities involved in system interoperation.

This “standard” representation can then be used as the intermediate representation in a

2-step translation process, reducing the number of required translations from n(n-1) to 2n

for a federation of n systems. The reconciled data model can also be used to submit a

data element standardization package to propose additional data standards or alteration of

existing standards if desired.

Measures of Effectiveness. The initial correlation process using

PL is an iterative process where the system analyst submits a query for a data element,

reviews the data element correspondences and then modifies the query or utilizes a

different search method to locate additional elements related to the given entity. Because

of the user-driven, iterative nature of the process, the authors did not provide

measurements of precision and recall for the correlation process. They did provide a

measure of the effort required for the overall DELTA process. A single analyst was able

 117

to correlate approximately 200 data elements across four databases in one work week- the

equivalent of approximately 5 data elements per hour or 12 minutes per attribute.

Additional experimentation conducted in [CHR97] reported correlation times of

approximately 15 minutes per attribute. [BFH+95]

b. Neural Networks
Li and Clifton focus on “identifying corresponding attributes in different

DBMSs that reflect the same real-world class of information [LC00, p.51].” Their goal is

to develop a semi-automated integration procedure that uses database metadata to extract

the semantic information necessary to identify attribute correspondences. Database

semantic information can be contained within the database model, within the conceptual

schema, as part of application programs, or within the mind of the user. Available

database metadata includes attribute names, schema design, constraints, and data

contents. The authors’ approach concentrates on using the conceptual schema and

database model and contents to extract the necessary semantic information; they don’t

attempt to parse the application programs or “pick the user’s brains.”

The authors introduce SEMantic INTegrator (SEMINT), a neural network

based tool that utilizes database metadata to identify attribute correspondences. SEMINT

uses database management system (DBMS) specific parsers to extract metadata (schema

design, constraints, and data content statistics) from databases to be integrated. The

metadata forms a signature describing the attributes of the databases. The attribute

signatures are used to train a neural network to recognize the signatures and thus identify

corresponding attributes based on similar attribute signatures. Neural networks can learn

the similarities among data directly from instances of the data and, without prior

knowledge of any data relationships or patterns, empirically infer correspondences

between data attributes.

The attribute correspondence process used by SEMINT involves a five-

step procedure. The following overview of the semantic integration procedure is

presented in Figure III-3 below.

 118

Step 1. Metadata in the form of schema information and data content statistics is

extracted from an individual database using DBMS specific parsers.

Step 2. The metadata is normalized as a series of attribute vectors containing values of

data content-based discriminators for each attribute. The attribute vectors are

input to a self-organizing map algorithm that categorizes attributes into cluster

centers according to their proximity to other attribute vectors on the map.

Step 3. The cluster centers are used to train a three-layer backward propagation neural

network to recognize attribute categories;

Step 4. The trained neural network is provided the attribute information from another

database from which it provides the similarity between each input attribute of

this new database and each attribute category from the original database used to

train the network.

Step 5. System users check and confirm the similarity results returned by the trained

network. [LC94, LC00]

Figure III-3. Semantic Integration Procedure (From [LC94, LC00])

(1) Metadata Extraction Using DBMS-Specific Parsers. There

are three levels of metadata that can be automatically extracted from a database: attribute

names (dictionary level), schema information (field specification level), and data contents

and statistics (data content level). Most of the past work in attribute correlation has

focused on metadata available at the dictionary level. However, due to problems with the

use of non-English attribute names and the use of synonyms and homonyms, approaches

relying on the use of attribute names for identifying correspondences have been largely

unsuccessful. SEMINT avoids the use of dictionary level metadata and focuses on

 119

utilizing metadata at the field specification level and data content level (average number

of occurrences, variation, groupings, etc.).

Field specification level information used by SEMINT includes

data types, length, scale, precision, and the existence of constraints, such as primary keys,

foreign keys, candidate keys, value and range constraints, disallowing null values, and

access restrictions. Data contents can be used to supplement the name and schema

information for determining attribute correspondences.

Data content information includes statistics on data contents such

as the maximum, minimum, average, variance, coefficient of variance (square root of

variance divided by the average), existence of null values, existence of decimals, scale,

precision, grouping and number of segments. For numerical fields, the actual values in

the fields are used to compute these statistics. For character fields, the statistics are

computed based on the number of bytes used to store the data rather than the actual value

of the data in the fields.

Other semantic information such as security constraints and

behavior constraints such as the use of cross-references, views, clusters, sequences,

synonyms, and dependencies can also be extracted from the system data dictionary. A

complete list of metadata discriminators used in SEMINT is provided in Table III-1.

SEMINT automatically extracts schema information and constraints from the database

catalogs and computes statistics on the data contents using database queries.

(2) Normalization of Metadata. Inputs to the neural network

used by Li and Clifton are required to be in the range of [0.0, 1.0], indicating whether a

neuron is triggered or not [LC00]. Therefore the values assigned to the metadata

discriminators of an attribute must lie in the range of [0.0, 1.0], even though the actual

value of the discriminator can be of different types with different value ranges.

Consequently, input values for SEMINT’s neural networks must be normalized to fit

within a range of [0.0, 1.0].

For each attribute, information for the various discriminators is

extracted from the database, transformed into a single format, and normalized. For each

database, the parser outputs a set of vectors, one for each attribute, which consists of a list

 120

of normalized discriminator values for that attribute. These vectors represent the

signature of the attribute in terms of its schema design and data content patterns.

Table III-1. Metadata and Data-Content-Based Discriminators Used in SEMINT
(From [LC00])

(3) Classifier. A classifier algorithm is used to cluster

attributes from a single database into related categories. Grouping information in a

database into clusters reduces the problem size and resultant neural network training time

by reducing the number of nodes in the network. SEMINT uses an unsupervised learning

algorithm, an adaptation of Kohonen’s Self-Organizing Map (SOM) algorithm [Koh87],

to classify attributes within a single database. The discriminator values from the attribute

vector are used to plot each attribute in an N-dimension space, where N is equal to the

number of discriminators used. Clusters are defined by grouping attributes whose plot

falls within a predefined radius defined by the user. Cluster composition was determined

from the user’s input of the number of clusters to be created in Kohonen’s original SOM

algorithm; Clifton and Li’s modification employs a user-entered cluster radius rather than

the number of clusters to determine cluster composition. The classifier outputs a vector

of cluster center weights for each cluster that is computed by taking the average of the

discriminator values for the attribute vectors contained within a cluster.
 121

(4) Category Learning and Recognition Neural Networks. The

cluster center weight vectors output by the classifier are used as training data for a back-

propagation network. Then, when the trained neural network is provided signatures of

attributes from another database, it indicates if there are any matches between the clusters

output from the classifier algorithm and attributes in the other database. The neural

network provides a value for each cluster in the network indicating the similarity between

the attribute and the target database cluster. Output values range from 1.0 for “equal” to

0.0 for completely dissimilar.

(5) Experimental Results. The authors presented their results

from using SEMINT to provide attribute correspondences for three separate database

integration problems. In the first problem, they used SEMINT to correlate attributes

from similar databases from the same organization that contained a good deal of common

information. For this application they achieved recall values of 100% and precision

values between 90 and 100%. Similar results were obtained in an experiment that split

one large database into two halves and then attempted to correlate the two halves,

achieving recall values of close to 90% and precision values of approximately 80%.

However, in a third experiment, conducted on two diverse databases containing related

but not common information, results were much less favorable. In this experiment,

which is closer to the application expected for establishing correspondences between

component system classes in a federation, the authors achieved a recall of 38% and a

precision of 20%. Additional experimentation conducted in [CHR97] reported recall

values in the 20% range.

c. Applicability of Artificial Intelligence Approaches to
Interoperability Correlation Problem

The two artificial intelligence based correlation approaches investigated,

the exploitation of natural language information in correlating data elements, and the use

of neural networks to learn the similarities among data from field specifications and data

content, appear to offer the greatest potential for application to the interoperability

correlation problem. Personal Librarian’s (PL’s) full-text retrieval capability is well-

suited to correlating component system classes given the text-based nature of the

semantic information contained in legacy system data dictionaries and data definition

 122

languages [BFH+95]. Similarly, SEMINT’s use of neural networks to determine

semantic correspondence of data elements based on metadata and data element instances

makes it equally suitable for use in the interoperability context [LC94]. These two

approaches are complimentary- PL is based on informal descriptions and interpretations

of data elements and SEMINT is based on the formal structure of data, including data

types and constraints. Therefore, a combination of the two approaches should provide

greater correlation success than either one alone.

C. SUMMARY
In this chapter I provided the foundation for selecting the methodology for

correlating component and federation representations of the real-world entities involved

in the interoperation of a federation of systems. Correlation measures of effectiveness

were provided for evaluating candidate correlation approaches. Relevant existing

correlation methodologies were then reviewed to provide an understanding of the various

approaches and to provide an evaluation of the methodology against the prescribed

correlation measures of effectiveness, where possible. Chapter VI discusses the selection

of the correlation methodology for use in the OOMI IDE and provides details of the

implementation of the approach used for correlating component and federation

representations of the real-world entities involved in the interoperation among systems.

 123

THIS PAGE INTENTIONALLY LEFT BLANK

 124

IV. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY
(OOMI)

A. INTRODUCTION
As stated in Chapter I, the goal of this research is to provide a computer-aided

methodology to aid in the resolution of differences among independently developed

heterogeneous systems in order to enable system interoperability. Interoperability was

defined in Section I.A as the capability of systems to exchange information and to jointly

execute tasks [LISI98, Pit97]. The information exchanged between interoperating

systems consists of data used to capture the state of the real-world entities in the problem

domain being modeled by systems in the federation. The joint execution of tasks reflects

the capability of one system to employ the services of another. These services define the

behavior of the real-world entities being modeled. Thus, interoperation can be

characterized in terms of the real-world entities whose state information is exchanged

between systems or whose services are invoked by another system.

The model used to portray a real-world entity can vary among independently

developed systems. By their nature, two development teams charged with independently

modeling the same problem domain would most likely produce different models of the

real-world entities involved due to diverse perspectives of the problem, the use of

equivalent constructs to model the problem environment, or dissimilar objectives for the

resulting models [BLN86]. These modeling differences must be resolved if the systems

are to interoperate.

B. METHODS FOR RESOLVING HETEROGENEITY AMONG SYSTEMS
Holowczak and Li provide a survey of methods for resolving heterogeneity in

multidatabase systems [HL96]. The authors discuss four techniques for representing the

correspondence among heterogeneous database attributes as well as the means for

resolving the heterogeneity between attribute representations. The covered

methodologies are:

 125

1. The use of tables to capture attribute correspondences between heterogeneous
databases;

2. The use of formulae to represent the correspondence between attributes in one
database and those of another;

3. An ontological representation of attribute correspondence; and
4. A modeling approach to resolving heterogeneity issues.

In the table-based approach, corresponding attributes are listed in a row of the

table, with each column in a row representing a different database representation.

Additional columns in the correspondence table can be used to capture any conversions

required to resolve differences between representations. Each table row forms a tuple,

which represents a static correspondence between attributes in different databases.

Tables are straightforward to implement and are adequate for addressing simple

attribute correspondences and for resolving naming, format, and structural heterogeneity.

The major disadvantage with the use of tables is their inability to deal with higher arity

attribute correspondences (e.g. one-to-many) and other forms of heterogeneity, such as

heterogeneity of scope.

Attribute correspondences can also be represented by using a formula that maps

attributes in one database to an attribute in another. The formula-based method is an

extension of the previously discussed correspondence table and as such is capable of

addressing the heterogeneity issues covered by the table-based method. In addition,

functions defined by such formulas are able to resolve conflicts between atomic and

composite keys as well as resolve heterogeneity resulting from missing or conflicting

data. The main disadvantage of the formula-based method is its failure to assure round-

tripping in the conversion between attribute representations; the inverse of a function may

lose precision enabling it to only operate accurately in one direction. If the formula does

not define a one-to-one function, the inverse can be multi-valued. Forcing a one-to-one

relationship by choosing an arbitrary element of the set of possible inverse images is what

causes loss of precision.

Another method for resolving heterogeneity in a multidatabase system is through

use of an ontology to provide correspondence among database attributes. An ontology is

“a knowledge base consisting of entities and relationships with abstraction, inference and

typing mechanisms” [HL96, p.8]. The ontology serves as a global schema to which

 126

attributes in component databases are associated via syntactic and semantic relationships.

The associations between the global schema and component databases serve to enable

translation between the component and global schema model of an attribute.

The main benefit of the ontological representation method is its ability to resolve

heterogeneities of scope, level of abstraction, and temporal validity. The primary

drawback to this method is related to the time and effort needed to construct the required

ontology.

The modeling approach uses a high-level, typically object-oriented, model to

encapsulate a component database. Heterogeneities between component databases are

resolved by methods that enable translation between attribute representations. The

methods may use a table, function, knowledge base, or other approach to resolve the

heterogeneity issues.

An object-oriented modeling approach has the potential to address all forms of

heterogeneity through the definition of custom methods. Naming differences are

resolved by using attribute aliases. Format differences are handled by encapsulating the

component database. Identity conflicts and missing or conflicting data can be addressed

by approximating or interpolating values or by alerting the user. Structural, scope, level

of abstraction, and temporal validity differences can be resolved by custom methods.

Table IV-1 compares the four methods used for resolving representations in

multidatabase systems. Each method is shown with a brief description and general

advantages and disadvantages of the approach.

Although the methodologies defined above have been used for mapping attribute

correspondences and for resolving heterogeneity among databases, they can also be

applied for achieving interoperability among a federation of independently developed

systems. That is the context being investigated by the research covered in this

dissertation.

 127

Table IV-1. Comparison of Multidatabase Heterogenity Resolution Methods
(after [HL96])

Method

Table Formulae Ontology Model
Description Attribute

correspondence
represented as
tuples

Attribute
correspondence
represented as
functions

Attribute
correspondence
represented as
Articulation
axioms

Attribute
correspondence
represented in
data model

Advantages Ease of
implementation

Capable of
addressing
complex
heterogeneity
and limited
inference
ability

Flexible and
can address
complex
heterogeneity.
High inference
ability

Flexible and
can address
complex
heterogeneity

Disadvantages Inability to deal
with complex
heterogeneity

Loss of
precision
problems

Requires a pre-
existing robust
ontology.

Limited
shareability

C. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)4
Upon evaluating the methods for resolving heterogeneity among multidatabase

systems covered in Section IV.B against the context of the problem being investigated by

this dissertation, an approach that included aspects from the formulae, ontology, and

model methodologies was determined to provide the greatest benefit in resolving

heterogeneities among a federation of independently developed systems. The resulting

methodology, named the Object-Oriented Method for Interoperability (OOMI), is based

on providing a model of the real-world entities whose state and behavior are shared

among systems. The methodology includes a Federation Ontology to provide a

canonical representation for the shared information, and utilizes formulae-based methods

for resolving differences between component and canonical representations of the shared

information.

Due to the potential of a modeling approach to address all forms of heterogeneity,

and the following benefits of Object-Oriented Analysis and Design (OOAD), it was

4 Portions of this material originally appeared in a paper entitled Using an Object

Oriented Model for Resolving Representational Differences between Heterogeneous
Systems [YBG02].

 128

determined that an object-oriented modeling approach offered the greatest promise for

achieving system interoperability when compared with the other approaches for

heterogeneity resolution. OOAD provides principles of abstraction, information hiding,

and inheritance that can be employed in the resolution of differences among

independently developed heterogeneous systems [KA95, WCS00].

As the basis for achieving interoperability among systems, I define an object-

oriented model that captures the shared state and behavior for a federation of systems.

The resulting Federation Interoperability Object Model (FIOM) captures differences in

modeling of the real-world entities whose state and behavior are shared among systems

and provides the means for resolving such differences. Principal objectives of the FIOM

are to:

• provide an abstract model of the real-world entities whose state and behavior are
shared among federation systems, hiding the details of how that information is
modeled on different systems, except when required for difference resolution;

• include the different component system models of the shared real-world entities
with their abstract model in order to facilitate difference resolution;

• provide the means for resolving modeling differences among systems; and
• be extensible; adding new real-world entities whose state and behavior are shared

among systems in the federation, or including new component system models of a
real-world entity, should not affect contents or relationships in an existing model.

The FIOM presents a model of the shared state and behavior and provides a basis

for achieving interoperability among systems. Construction of such a model for a large

federation of systems could be a time-consuming, error-prone process. In order to reduce

the time, cost, and potential for errors involved in building such a model, the use of

computer aid is desired during model construction. The OOMI Integrated Development

Environment (OOMI IDE) provides such computer aid to the interoperability engineer for

constructing a FIOM for a specified federation of systems.

Finally, the ultimate objective in resolving modeling differences among

independently developed heterogeneous systems is to enable system interoperation. The

strategy employed for meeting this objective is to use the FIOM constructed prior to

runtime for a specified federation of systems to enable runtime resolution of system

heterogeneities. Resolving heterogeneities during runtime implies an automated

approach that utilizes the FIOM for achieving system interoperability. The OOMI
 129

achieves this objective through employment of one or more OOMI translators that act as

intermediaries between federation components.

Figure IV-1 provides an overview of the components of the OOMI. Details of the

FIOM are discussed in Section IV.C.1. An introduction to the OOMI IDE is provided in

Section IV.C.2 with details provided in Chapter V. The OOMI translator is introduced in

Section IV.C.3 and covered in detail in Chapter VII.

OOMI Integrated Development
Environment (OOMI IDE)

Federation Interoperability
Object Model (FIOM) OOMI Translator

<<creates>> <<used by>>

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

groundCombatVehicle

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator Destination Model Translator

groundWeaponSystem

groundWeaponSystem _View 1
groundWeaponSystem _View 2
 ...
groundWeaponSystem _View J

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 . . .
enemyOrderOfBattle _ViewK

artillery _View 1
artillery _View 2
 . . .
artillery _View L

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 . . .
federationEntityZ _ViewX

.

.

.

.

groundCombatVehic le _View 1
groundCombatVehic le _View 2
groundCombatVehic le _View 3

groundCombatVehic le

Figure IV-1. Object-Oriented Method for Interoperability (OOMI) Key Components

1. Federation Interoperability Object Model (FIOM)
Before looking at the specific components of the FIOM used for capturing the

real-world entities whose state and behavior are shared between federation systems, a

closer look at the types of modeling differences that can occur in heterogeneous systems

presented in Section II.A.2 is provided. This examination will provide insight into the

components used to model a real-world entity in the FIOM and supply a foundation for

understanding the methods used for resolving heterogeneities among component system

models of those entities.

a. Categories of Modeling Differences
Section II.A.2 provides a classification of modeling differences that can

arise in heterogeneous systems. Further examination of this classification suggests an

additional categorization of the eight classes of heterogeneity cited. Heterogeneities of

scope, level of abstraction, and temporal validity all relate to differences in what real-

world-entity characteristics are modeled by different systems. Heterogeneities of

hardware and operating systems, organizational models, structure, presentation, and

 130

meaning all relate to differences in how these characteristics are modeled by different

systems. When two systems use different features to model the same real-world entity,

then the two systems can be said to have different views of the real-world entity. When

two systems use the same set of features to model the same real-world entity, they have

the same view of the real-world entity. Two systems that have the same view of a real-

world entity can nevertheless model the same feature differently. In this case, the two

systems are said to provide different representations of the modeled feature.

To help further distinguish the difference between a view and the

representation of a view, the following definition is provided. A view is defined in the

OOMI as a tuple (Αε, Ωε) of attribute and operation sets used to model the state and

behavior, respectively, of the real-world entities involved in system interoperation.

Specifically:

• Αε signifies the attributes Αε1, … , Αεn contained in the model of a real-world
entity that are exposed to other models in the federation.

• Ωε signifies the operations Ωε1, … , Ωεn defined in the real-world entity model
that are available for invocation by external models in the federation.

Each operation Ωε can include parameters p1, … , pn used to convey the information

required to perform the operation’s computation or that are returned as a result of the

computation.

 131

In order for two systems to have the same view of a real-world entity,

there must be no difference in scope, level of abstraction, or temporal validity between

the two systems’ models of the entity. In the context of the above definition, this means

that at some level of aggregation each attribute set and each operation set of each system

must be in one-to-one correspondence. That is, the attributes Aε of each system must be

in one-to-one correspondence at some level of aggregation; the operations Ωε of each

system must be in one-to-one correspondence at some level of aggregation; and similarly

for parameters p1, … , pn of corresponding operations. This does not necessarily mean

that at the atomic level of attribute or operation definition that there is a one-to-one

correspondence, but that such a correspondence can be provided through aggregation of

one or both systems attributes and operations. For example, suppose two systems each

contain an attribute that provides the geographic coordinates of a real-world entity.

System A’s position attribute uses a latitude/longitude coordinate system and includes

components latitude and longitude. System B’s location attribute uses the MGRS

coordinate system and includes components UTM Zone, MGRS Northing, and MGRS

Easting. While there may not be a one-to-one correspondence between System A’s

latitude and longitude and System B’s UTM Zone, MGRS Northing, and MGRS Easting,

such a correspondence does exist between System A’s position and System B’s location

attributes.

In addition to the requirement for a one-to-one correspondence between

attribute and operation sets, corresponding operations must be behaviorally equivalent for

two systems to have the same view of a real-world entity. In the interoperability context

provided in this dissertation, behavioral equivalence of two operations is defined in terms

of a black box view. Two operations are considered behaviorally equivalent if, over the

complete set of possible inputs, they produce equivalent outputs from equivalent inputs

when executed in the same environment. Input and output equivalence is defined in

terms of the attribute and operation correspondence discussion provided in the previous

paragraph. The correlation methodology discussed in Chapter VI can be used to assist

the interoperability engineer in determining whether two inputs or two outputs are

equivalent. Operation behavioral equivalence determination is identified as an area for

future research and is left to the interoperability engineer.

To help illustrate this problem, suppose a federation of four autonomously

developed military systems contained information about an enemy ground combat

vehicle. From Figure IV-2 it can be seen that Systems A and B include information

about the vehicle’s type, position, time, and range. System C captures type, position, and

time information on the entity, and System D utilizes type, position, time, and status to

describe the vehicle. For Systems A and B there is a one-to-one correspondence between

attributes ΑεA1 (type), ΑεA2 (position), ΑεA3 (time), and ΑεA4 (range) from System A and

attributes ΑεB1 (type), ΑεB2 (position), ΑεB3 (time), and ΑεB4 (range) from System B.

Thus, Systems A and B are said to provide the same view of the ground combat vehicle.

Because the attributes exposed in the external interface for system C (ΑεC1 (type), ΑεC2

(position), and ΑεC3 (time)) do not exhibit a one-to-one correspondence with the attributes

 132

exposed by Systems A or B, System C is considered to provide a different view of the

real-world entity than that provided by Systems A and B. Similarly, the attributes

exposed by System D’s model of the ground combat vehicle (ΑεD1 (type), ΑεD2

(position), ΑεD3 (time), and ΑεD4 (status)) provide a third view of the real-world entity.

This example illustrates differences in view of a real-world entity among system models

based on the attributes exposed in the system’s external interface (Αε); information

contained in exposed operation signatures (Ωε), as well as operation behavioral

differences must also be evaluated in order to determine whether two models provide the

same view of a real-world entity.

identifier
-type
-position
-time
-range

System A Ground Combat Vehicle (GCV)

identifier
-type
-position
-time
-range

System B

identifier
-type
-position
-time
-status

System D

identifier
-type
-position
-time

System C

Figure IV-2. Differing Views of Real-World Entity

Even if two systems provide the same view of the entity being modeled,

there may still be differences in the way their attributes, operation names, and operation

parameters are represented in terms of heterogeneity of hardware and operating systems,

organizational models, structure, denotation and meaning. This difference in

representation is illustrated in Figure IV-3 by systems A and B. Even though these

systems both have the same view of our real-world entity, i.e. both capture the type,

position, time, and range for the entity; they each contain differences in the way that

 133

information is represented- as a result of heterogeneities caused by hardware and

operating systems, organizational models, structure, presentation, or meaning. For

example, System A refers to our entity as an Armored Combat Vehicle and names its type

attribute acvType. System B refers to our entity as a Mechanized Combat Vehicle and

names its type attribute mcvType. Additionally, System A captures the entity’s position

as acvPosition recorded using its latitude/longitude coordinates, and the time of the

vehicle data entry as acvTime using Greenwich Mean Time (GMT) as the reference;

whereas System B records entity mcvLocation using Military Grid Reference System

(MGRS) coordinates and records mcvTime using Local Mean Time (LMT). Finally,

System A records the vehicle’s combat range as acvRange measured in nautical miles

(nm) whereas System B records the same quantity as mcvRadius measured in kilometers

(km). Determining whether two models of a real-world entity that provide different

representations for the entity’s attributes and operations present the same view is a task

that will be discussed further in Chapter VI. Figure IV-3 illustrates the different views of

the example real-world entity and the various representations provided for each view.

ArmoredCombatVehicle
-acvType
-acvPosition (lat/long)
-acvTime (GMT)
-acvRange (nm)

System A
Ground Combat Vehicle (GCV)

MechanizedCombatVehicle
-mcvType
-mcvLocation (MGRS)
-mcvTime (LMT)
-mcvRadius (km)

System B

ArmoredFightingVehicle
-afvClassification
-afvLocation (lat/long)
-afvObsTime (GMT)
-afvStatus

System D

ArmoredMilitaryVehicle
-designation
-position (lat/long)
-time (GMT)

System C

View 1
name
type
position
time
range

View 2
name
type
position
time

View 3
name
type
position
time
status

Figure IV-3. Differing Real-World Entity View Representations

 134

b. FIOM Composition
It is expected that for a federation of heterogeneous systems, a number of

real-world entities will be involved in the interoperation among systems. This collection

of real-world entities is used to define a Federation Interoperability Object Model

(FIOM) under the OOMI. The FIOM serves to capture 1) the real-world entities involved

in system interoperation, 2) the different views a component system model might provide

of these entities, 3) the different ways those views may be represented, and 4) the

mechanisms used for resolving differences in view and representation seen in component

system models.

(1) Capturing Real-World Entities and Views. The real-world

entities whose state and behavior information are shared among a federation of

interoperating systems are modeled in the OOMI as a Federation Entity (FE). The FE

provides an abstract model of the information being shared while hiding the details of

how that information is modeled on different systems. Each FE is composed of one or

more Federation Entity Views (FEVs) used to distinguish differences in scope, level of

abstraction, or temporal validity of the attributes and operations used for modeling the

same real-world entity on different systems. As mentioned in Section IV.C.1.a,

differences in operation behavior between systems would also result in defining different

FEVs for the real-world entity being modeled. Figure IV-4 depicts the OOMI archetype

for a real-world entity defining the interoperation among systems, an FE, illustrating the

relationship between an FE and its constituent FEVs. As can be seen in the figure, an FE

is composed of one or more FEVs, each of which provides a different view of the

modeled real-world entity. Additional FEV components shown in the figure will be

discussed in the next two sections.

 135

(2) Capturing Federation Entity View (FEV) Representations.

In addition to differences in what characteristics are chosen to model a real-world entity,

different component systems may also represent the same characteristics differently. As

discussed in Section IV.C.1.a, these differences may be due to heterogeneities of

hardware and operating systems, organizational models, structure, presentation, and

meaning found on the different systems. In order to capture these differences, an FEV

itself includes a number of components. The first FEV component seen in Figure IV-4,

the Federation Class Representation (FCR), is used to reflect the “standard” (as defined

by the interoperability engineer) representation used by the federation for an entity’s

view. A “standard” representation is introduced to reduce the number of translations

required for resolving representational differences among systems.

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
translate(fcrN:FCR_Schema):CCR_Schema

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
translate(fcrN:FCR_Schema):CCR_Schema

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
translate(fcrN:FCR_Schema):CCR_Schema

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

FE

Figure IV-4. OOMI Federation Entity (FE) Archetype

The typical approach to resolving modeling differences among

systems involves the use of a number of bilateral translators between systems to be

integrated [RRS96]. For a federation of n systems, this approach requires the

specification of n(n-1) translations. An alternative to the use of bilateral translators

involves the use of an intermediate representation for the real-world entities whose state

and behavior information are shared among systems. Under this approach the shared

information would first be converted from the source representation to the intermediate

representation and then from the intermediate representation to the destination

representation. The use of an intermediate representation reduces the number of required

translations from n(n-1) to 2n for a federation of n systems. The FCR provides the

intermediate representation for translation between a source and destination system.

 136

To support standardization of this intermediate representation, the

terminology and representation used to define the FCR is based on an ontology

containing the federation-sanctioned representation of an entity’s state and behavior.

This ontology can be developed specifically for a federation of systems or it can be

derived from a domain-specific or industry-wide standard such as the Defense

Information Systems Agency’s (DISA’s) Defense Information Infrastructure (DII)

Common Operating Environment (COE) XML Registry [DII01] or the Defense Modeling

and Simulation Office’s (DMSO’s) Functional Description of the Mission Space (FDMS)

namespaces [FDM01].

The second FEV component seen in Figure IV-4, the Component

Class Representation (CCR), is used to capture the possible alternative component system

representations of an entity’s view. The CCR defines the component system model of a

real-world entity and serves as the source or destination representation for translation

between models. Whereas each FEV will contain exactly one FCR that provides the

“standard” representation of that view, each FEV may contain many CCR’s depending on

the number of component system models of a particular real-world entity view. As will

be shown in Appendix A, there may also be FEV’s that do not have a CCR defined for

them. As depicted in Figure IV-4, an FEV contains exactly one FCR and may include

zero or more CCRs.

Figure IV-5 illustrates the CCRs and FCRs created for the system

A through D representation of the example ground combat vehicle previously introduced

in Figure IV-3. Note that each FEV contains a single FCR whereas an FEV may contain

more than one CCR- the groundCombatVehicle_View1 FEV includes CCRs armored-

CombatVehicle_CCR and mechanizedCombatVehicle_CCR corresponding to System A’s

and System B’s representation of the view, respectively. FCR and CCR components and

their relationships, to be discussed in the following paragraphs, have been omitted from

the figure to enhance understandability.

 137

groundCombatVehicle_View1_FCR armoredCombatVehicle_CCR

groundCombatVehicle_View1

groundCombatVehicle_View2_FCR armoredMilitaryVehicleCCR

groundCombatVehicle_View2

groundCombatVehicle_View3_FCR armoredFightingVehicle_CCR

groundCombatVehicle_View3

groundCombatVehicle

mechanizedCombatVehicle_CCR

Figure IV-5. Example Views of a Federation Entity with Federation and Component

Class Representations

The FCR and CCR are each actually a composition of related

components. These components contain information 1) defining the attributes and

operations that characterize the state and behavior of the federation or component models

of a real-world entity, and 2) for identifying correspondences among models.

Identifying Federation and Component Model Attributes and

Operations. As depicted in Figure IV-6, the first of these components, the FCR Schema,

is used to capture the attributes and operations that characterize the state and behavior of

a federation model of a real-world entity. In general, a schema is a summarized or

diagrammatic representation of something. In our usage, the FCR Schema contains the

names and type signatures of the exposed attributes (Αε) and operations (Ωε) used to

provide the “standard” representation for the attributes and operations that define a

particular view of a real-world entity.

Similarly, the CCR Schema is used to capture the attributes and

operations that characterize the state and behavior of a component model of a real-world

entity. The CCR Schema contains the names and type signatures of the exposed

attributes (Αε) and operations (Ωε) used by a specific component system to model a real-

world entity from the problem domain. The prime difference between an FCR Schema

and a CCR Schema is in how they are used; the FCR Schema is used to characterize the

state and behavior of the “standard” model of a real-world entity while the CCR Schema

 138

is used to provide the same characterization for various component system models of an

entity.

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

Figure IV-6. OOMI Archetype for Federation and Component Class Representations

(FCR and CCR) Showing Constituent Schema, Syntax, and Semantics Classes

Whereas the FE, FEV, FCR, and CCR are conceptual constructs

that may or may not have corresponding components in an FIOM implementation, it is

expected that both FCR and CCR Schemas would be modeled as classes in an

implementation of the FIOM. Information exchange and joint task execution among

systems is effected through use of FCR and CCR Schema instances to transport

information between systems.

Figure IV-7 depicts the FCR and CCR Schemas for the example

groundCombatVehicle_View1 FEV from Figure IV-5. Similar FCR and CCR Schemas

for groundCombatVehicle views 2 and 3 have been omitted to enhance readability.

Attribute names for state information used in the FCR and CCR Schemas are taken from

Figure IV-3. Operations included with the FCR and CCR Schemas are standard accessor

and mutator methods for the included attributes. Additional operations exposed by

federation and component models of a real-world entity would also be included in the

FCR and CCR Schemas defined for an FEV. An association is established between the

FCR Schema and all CCR Schemas that define the same view of the modeled real-world

entity.

 139

groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

mechanizedCombatVehicle_CCR

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType()
getPosition()
getTime()
getRange()
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType()
getAcvPosition()
getAcvTime()
getAcvRange()
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

<<CCR Schema>>

1

1

1

Figure IV-7. FCR and CCR Schemas for Example Ground Combat Vehicle

 140

Identifying Correspondences Among Models. Previous efforts

toward integrating heterogeneous databases found that a large part of the effort was

consumed by determining whether two entries in related databases represented the same

entity [LC94]. An equivalent situation exists in the integration of heterogeneous system

components. When presented with a number of systems to be integrated, the

interoperability engineer must determine when two systems’ models of shared

information refer to the same real-world entity. Establishing this correspondence is

crucial in order for systems to exchange information and operations and is the basis for

defining the FEs characterizing the interoperation of federation systems.

In order to assist the interoperability engineer in establishing the

correspondence between different models of a real-world entity, the FCR and CCRs also

include syntactic and semantic information used to correlate the “standard” and various

component system models of the real-world entities defining the interoperation. This

information is represented using the components FCR Syntax and CCR Syntax to capture

syntactic information on the “standard” and component representations of an FEV,

respectively. Similarly, components FCR Semantics and CCR Semantics capture

semantic information about the “standard” and component representations. This

syntactic and semantic information is used to determine the correspondence between

component system and federation models of a real-world entity in order to define the

entities, views and representations of the FIOM. Once determined, this correspondence

is captured in the model as an association relating an FEV’s FCR and CCR Schemas and

is used later for resolving differences in representation between the models as discussed

in Section IV.C.1.b(3). Figure IV-6 depicts the FCR and CCR components of an FEV,

with constituent Schema, Syntax and Semantics components shown for each of them.

Syntactic information is used to capture the composition and

structure of a class. Class composition is provided as a list of terms depicting the class

name, and the names and type signatures of the attributes and operations contained in the

class. Structural information includes data specifying the cardinality of attribute or

operation occurrence, which attributes are included as parameters to which operations,

whether attributes and operations are visible outside the class, etc. The composition and

structure defines a signature for the class that can be used for comparison with other

classes.

Semantics are used to provide information as to the meaning and

behavior of a class, i.e., what does the state information about a class represent and what

actions does the class perform? Behavioral information can be captured in terms of a

narrative description of the class and its attributes and operations; a set of conditions an

 141

operation must satisfy; or a set of equations describing the dynamic behavior of the class.

Details of the composition of FCR and CCR Syntax and Semantics

classes are provided in Section VI.B.1. Their use for determining correspondence among

component and federation models of a real-world entity is discussed in Section VI.B.2.

(3) Mechanisms for Resolving Differences in View and

Representation. The FIOM includes two mechanisms for resolving differences in view

and representation among component and federation models. The first mechanism, the

FCR-CCR Translation, is used to resolve differences in representation between two

models that have the same view of a real-world entity. The second mechanism, the FCR

Schema Inheritance Hierarchy is used to resolve differences in view.

Resolving Representational Differences Between Component and

Federation Models. Differences between component representations having the same

view of a real-world entity are resolved by means of a two-step translation process

whereby an instance of a source CCR Schema is first converted to an equivalent FCR

Schema instance and then to a corresponding destination CCR Schema instance. As

mentioned in Section IV.C.1.b(2), each FEV will contain exactly one FCR and may

contain zero or more CCRs. Accordingly, an FCR may correspond to a number of CCRs

in the FEV, whereas each CCR will have exactly one FCR to which it corresponds. Each

CCR thus forms a unique FCR-CCR pair with its corresponding FCR. For each FCR-

CCR pair, an FCR-CCR Translation is defined relating the FCR and CCR Schemas in

order to enable conversion between schema instances. The FCR-CCR Translation class

is expected to be implemented as an association class and will include methods used to

resolve differences among models related to heterogeneities of hardware and operating

systems, organizational models, structure, presentation, and meaning. The FCR-CCR

Translation class is defined by the interoperability engineer and stored in the FEV for

subsequent use.

Figure IV-8 illustrates the FCR-CCR Translation class used to

resolve differences in representation between federation and component models having

the same view of a real-world entity. An FCR-CCR Translation class contains two main

methods to accomplish the conversion between schema instances. The first,

 142

translate(ccrN : CCR_Schema) : FCR_Schema is used to convert an instance of a CCR

Schema to its equivalent FCR Schema representation. The second,

translate(fcrN : FCR_Schema) : CCR_Schema is used to convert an FCR Schema instance to

an equivalent CCR Schema instance. Each of these methods contains a number of

component methods used to convert between representations at an attribute-by-attribute

and operation-by-operation level. These methods are of the form

ccrToFcr_fcrAttributeName(ccrAttributeName : ccrAttributeType) to convert from a

component to a federation representation of an attribute or

fcrToCcr_CcrAttributeName(fcrAttributeName : fcrAttributeType) to convert from a federation

to a component representation. Similar methods are defined for converting between

operation name and operation parameter representations. Details of FCR-CCR

Translation class creation can be found in Section V.D.2.c and its use in resolving

representational differences during runtime OOMI translator operation in Sections

VII.C.1.b and VII.C.2.c.

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
translate(fcrN:FCR_Schema):CCR_Schema

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

Figure IV-8. FCR-CCR Translation Class

Resolving Differences in View Among Component Models. The

translations depicted in Figure IV-8 and described in the previous paragraphs enable the

conversion between instances of two different schemas having the same view of the

modeled real-world entity. Rarely will two different systems’ view of a real-world entity

 143

be identical. In order to share information and jointly execute tasks between two systems

that have different views of the real-world entity(s) defining the interoperation, these

differences in view must be resolved. Fortunately it is just as rare that different systems’

views of a real-world entity are completely disjoint (otherwise they wouldn’t be able to

interoperate).

Generally, two or more systems’ models of the same real-world

entity will have some areas of commonality. Two systems’ models may capture the same

core state and behavior information of a real-world entity with each including additional

state and behavior characteristics as required by the specific application. In this situation

a schema could be defined for the core state and behavior information of the view, and

separate schemas defined for the extended information. The schemas containing the

extended information can be considered to be subtypes of the schema containing the

common core information. Commonalities in captured state and behavior information

between component system entity models enable us to determine when a supertype-

subtype relationship exists between two component system schemas defining different

views of the same real-world entity.

By determining the supertype-subtype relationships between

component system schemas, we can construct an inheritance hierarchy that can be used to

determine when the information contained in one system’s view of an entity is suitable

for use by another. Because there can be multiple component system schemas with the

same view and since the FCR Schema provides the “standard” representation of a view,

the inheritance hierarchy is constructed relating an FEV’s FCR Schemas. This hierarchy

is constructed by evaluating the attributes (Αε) and operations (Ωε) contained in the FCR

Schema for two views. Figure IV-9 shows the FCR Schema Inheritance Hierarchy

constructed for the example ground combat vehicle entity taken from Figure IV-3. Due

to space considerations and to enhance understanding, containing FCRs and related CCRs

with their included components are not shown with the FCR Schemas. Details of

inheritance hierarchy construction and a discussion of the relationships possible between

FEV schemas are provided in Chapter V and Appendix A.

 144

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

Figure IV-9. FCR Schema Inheritance Hierarchy

Determining when the information contained in one system’s view

of an entity is suitable for use by another is easy when the producer’s view of an entity is

a subtype of a consumer’s view, i.e. when the producer’s view schema extends the

consumer’s view schema. By Liskov and Wing’s behavioral notion of subtyping [LW94,

WO00], anywhere a supertype can be used a subtype can be substituted without any

difference in behavior. Thus, in this instance the consumer will just ignore any additional

information provided by the producer.

This determination is not as easy when the producer’s view is a

supertype of the consumer’s view, or when the producer’s view is not a direct ancestor or

descendent of the consumer’s view in the inheritance hierarchy. However, it is possible

that the supertype of a real-world entity’s view can be substituted for a subtype of the

view under certain circumstances. These situations would include cases where 1) the

attributes and operations which extend the supertype’s schema are optional for the

component system providing a representation of the subtype view, 2) the missing

information can be obtained from the available attributes and operations via interpolation,

data smoothing, etc., or 3) default values can be specified for those attributes and

operations (as allowable by the destination system). Similarly, information can also be

shared between component systems whose schemas are not direct ancestors or

descendents of each other if there is a path in the inheritance hierarchy defined between

 145

the producer view schema and the consumer view schema, and elements expected by the

consumer that are not provided by the producer are optional or default or constructed

values can be used. In order to avoid difficulties with multiple inheritance in the

construction of the inheritance hierarchy, join operations where information from two

different producers can be combined to create a new view satisfying a consumer’s

requirements are not permitted and are identified as an area for future research.

The inheritance hierarchy described above is used to resolve

differences in the number and type of attributes and operations used to model a real-

world entity between two systems in a federation. Differences in representation for two

systems having the same view of the attributes and operations used to model a real-world

entity are handled by the FCR-CCR Translation class methods included with each FEV

as discussed at the beginning of this section.

2. OOMI Integrated Development Environment (IDE)
Enabling a collection of related software systems to share information and task

execution has the potential for significantly enhancing the capability of the resultant

federation of systems over that of the individual components. The previously introduced

Object-Oriented Method for Interoperability (OOMI) is used to enable information

sharing and cooperative task execution among a federation of autonomously developed

systems by resolving heterogeneities among shared elements of the problem domain

modeled by the federation components. In order to resolve such heterogeneities, a model

of the real-world entities involved in the interoperation, termed an FIOM, is constructed

for the specified system federation. Construction of the FIOM is done prior to run-time

by an interoperability engineer with the assistance of a specialized toolset, the OOMI

Integrated Development Environment (OOMI IDE).

The Graphical User Interface (GUI)-based OOMI IDE is used to:

1. identify the real-world entities involved in the interoperation of systems in a
federation,

2. specify the different views of a real-world entity resulting from dissimilar
component system perspectives of the attributes and operations required to
model an entity,

3. define a “standard” federation representation for each real-world entity view
identified, and establish the relationship between the “standard” view
representation and various component system view representations,

 146

4. construct an inheritance hierarchy relating the different views of a real-world
entity,

5. manage a Federation Ontology of terms and representations used for defining
the “standard” federation representation of the real-world entities whose state
and behavior are shared among federation systems,

6. define the transformations required to translate between component system
and “standard” representations of a view, and

7. generate system-specific information to be used by a translator to resolve
modeling differences between component systems during their runtime
operation.

The first task in FIOM construction is determining the real-world entities whose

state and behavior are to be shared among systems in the federation. Each resultant FE is

constructed from information contained in the component systems’ external interfaces or

specified by an interoperability engineer. The OOMI IDE provides functionality for

enabling an interoperability engineer’s input or for extracting information from a

component system’s external interface definition in order to construct the FEs involved in

the system interoperation. FE construction is assisted through use of a Federation

Ontology containing the accepted terminology and representation to be used for defining

the federation model of the real-world entity specified by an FE. The OOMI IDE

provides functionality for accessing and modifying the Federation Ontology during

FIOM construction.

Defining different views for an FE based on dissimilar component system

perspectives of the attributes and operations required to model a real-world entity,

defining a “standard” federation representation for each view, and identifying the

relationships between views and between federation and component representations of a

view require the interoperability engineer to identify correspondences between

component and federation models of the real-world entities involved. Correlation

software is used during FIOM construction for relating component and federation models

of the real-world entities involved and for defining an inheritance hierarchy capturing

these relationships among federation entity views and view representations.

After identifying the different representations of an FEV used by component

systems, the transformations required to translate between representations must be

defined. The OOMI IDE assists the interoperability engineer in this task through the use

 147

of a GUI-based matching process used to provide computer aid to transformation

development, and the maintenance of a translation library to enable the reuse of common

translation algorithms.

Finally, class transformation and relationship information is extracted from the

FIOM for each component system. A translator uses the system-specific information to

resolve modeling differences between component systems.

Chapter V describes the functionality provided by the OOMI IDE and outlines the

construction of an interoperability object model for a federation of systems, the FIOM.

Correlation of component and federation real-world entity models is covered in

Chapter VI.

3. OOMI Translator
Whether conducting information exchange or joint execution of tasks between

systems, differences in view and representation of the real-world entities whose state and

behavior are shared among systems must be resolved. The interoperability object model

constructed for a specified federation of component systems during the pre-runtime phase

is used by a translator at run-time to reconcile differences in real-world entity view and

representation.

The translator serves as an intermediary between component systems. It can be

implemented as part of a software wrapper enveloping a producer or consumer system

(or both). A software wrapper is a piece of software used to alter the view provided by a

component’s external interface without modifying the underlying component code.

Alternately, the translator could be implemented on a stand-alone system that lies

between interoperating systems, such as on the hub in a hub and spoke architecture.

 148

Figure IV-10 shows an overview of the use of software wrappers and the

involvement of the FIOM in the translation process. As depicted in the figure,

information or an operation signature exported by a source system is intercepted by the

source model translator and converted from the source model to an intermediate model

using the appropriate translation defined in the FIOM. The intermediate model of the

exported information is then routed to the destination system where the destination model

translator intercepts it. The destination model translator first uses the FCR Schema

Inheritance Hierarchy contained in the FIOM to resolve differences in view between the

source and destination models of the exported information. The destination model

translator then converts the intermediate model of the exported information to a model

accepted by the destination system using the appropriate translation from the FIOM.

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator Destination Model Translator

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery _View1
artillery _View2
 ...
artillery _ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.
.
.
.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure IV-10. Translator - FIOM Interaction

The translations required by the translator for both information exchange and joint

task execution are similar. For information exchange, the source system provides the

exported information in the form of a set of attributes or objects of a producer class in the

native format of the producer. In order to be utilized by a consumer system, the exported

information must be converted into the format expected by the destination system. For

joint task execution, a client system provides an operation name and a set of parameter

values to a server system in the native format of the client. The parameters may be

attributes, operations, or objects of a client class. Again, this information must be

provided to the destination system in a format recognized by that system. Thus the

operation name and parameter values must be converted to a form recognized by the

server system in order to invoke the desired server operation.

 149

As indicated above, the translator must be capable of converting instances of a

class’s attributes and operations (or both attributes and operations in the form of an object

of the class) from one model to another. The information required to effect these

translations is captured as part of the FIOM during federation design. As presented in

Section IV.C.1.b(3), the information needed to resolve differences in what information is

used to model a real-world entity between various component systems is captured in the

FCR Schema Inheritance Hierarchy for each FE. Differences in how each component

system represents its view of the real-world entity are resolved through the translations

included as part of each FEV, illustrated in Figure IV-8. Then, at run-time, the translator

accesses the information contained in the model to resolve differences in federation entity

view and to effect the translation between component and standard representations of a

view. Chapter VII discusses the translator in detail.

D. SUMMARY
The Object-Oriented Method for Interoperability (OOMI) introduced in this

dissertation is used for resolving expected modeling differences in a federation of

independently developed, heterogeneous systems in order to enable system

interoperability. As the basis for achieving interoperability among systems, a model of

the real-world entities whose state and behavior are shared among systems in the

federation, termed a Federation Interoperability Object Model (FIOM), is defined.

Disparities in component system models of these real-world entities are differentiated as

to differences in what is modeled and differences in how the modeled information is

represented, termed differences in view and representation, respectively.

Differences in view among models are resolved through use of an FCR Schema

inheritance hierarchy relating commonalities among views provided by different

component system models of the same real-world entity. Differences in representation

are resolved through the use of translations to convert between models that provide the

same view of the real-world entity. In addition to the FCR Schema Inheritance Hierarchy

and translations used to resolve modeling differences among systems, the FIOM also

includes syntactic and semantic information used during FIOM construction to establish

the correspondences between different models of the same real-world entity.

 150

Construction of an FIOM for a specified federation of systems is done prior to

run-time by an interoperability engineer with the assistance of a specialized toolset, the

OOMI Integrated Development Environment (OOMI IDE). The OOMI IDE provides

computer aid in 1) identifying the real-world entities involved in the interoperation of

systems in a federation; 2) specifying the different views and view representations a

component system may provide of a real-world entity being modeled; 3) defining the

“standard” federation representation of such views and representations; 4) managing the

Federation Ontology used in federation representation definition; 5) constructing the

FCR Schema inheritance hierarchies and translations needed to resolve such modeling

differences; and 6) generating the system-specific information to be used by a translator

to resolve modeling differences between component systems during their runtime

operation.

Finally, at runtime, the OOMI translator utilizes the information contained in the

FIOM to automatically resolve differences in the information exchanged between

federation systems or in the operation signatures involved in joint task execution in order

to enable system interoperation.

 151

THIS PAGE INTENTIONALLY LEFT BLANK

 152

V. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY
INTEGRATED DEVELOPMENT ENVIRONMENT

(OOMI IDE)

A. OOMI IDE PURPOSE
As discussed in Chapter IV, resolution of modeling differences among

heterogeneous components of a federation is accomplished using a two-step process. In

the first step, accomplished prior to runtime, an integrated model of the real-world

entities whose state and behavior are to be shared among systems in the federation,

termed a Federation Interoperability Object Model (FIOM), is constructed. In the second

step, performed at runtime, translator(s) reconcile view and representational differences

among component systems using the FIOM.

While construction of the FIOM and its use in reconciling modeling differences in

itself advances methods currently used for system interoperability, the true benefits of the

Object Oriented Method for Interoperability (OOMI) lie in the foundation it provides for

application of computer aid. From the discussion in Section IV.C.2, five areas are

identified where computer-aid can be applied to the construction of an interoperability

object model for a federation of systems. These are:

1. extraction of information contained in a component system’s external
interface definition to construct a federation model of the real-world entities
involved in system interoperation,

2. managing the Federation Ontology used in federation model definition,
3. correlation of component and federation models of the real-world entities

involved in system interoperation and construction of an inheritance hierarchy
to capture the relationships between the models,

4. defining the transformations required to translate between different
information representations used in the component and federation models, and

5. generating system-specific information used for runtime resolution of
modeling differences among component systems.

A specialized toolset, the OOMI Integrated Development Environment (OOMI

IDE) is proposed to provide computer-aid in the above areas to the development of an

FIOM for a federation of component systems. The purpose of the OOMI IDE, given a

definition of the external interfaces of candidate federation components, is to construct a

 153

model of the interoperation between systems. A component system external interface

specifies the information it exports or imports as well as the operations it either makes

available to external entities or requires from external systems or components in order to

accomplish its objectives. From the component system’s external interface definition a

model, the FIOM, is constructed that defines the state and behavioral information shared

between component systems and provides the mechanisms for resolving differences in

view and representation of that information among systems.

B. OOMI IDE DEVELOPMENT CONSIDERATIONS
Before discussing the FIOM construction process used to define the proposed

OOMI IDE and the initial IDE prototype components designed to support

implementation of those processes, I first take a look at some of the high-level

considerations used in developing an IDE to be used to support FIOM construction.

First among these considerations is the degree to which application of computer

aid is feasible. In other words, is the FIOM construction process completely automatable

or is human intervention required? Section V.C discusses the FIOM construction process

and identifies which phases in the process are amenable to application of computer aid.

Section V.D then describes the components of an initial prototype OOMI IDE designed

to add computer aid to the FIOM construction process introduced in Section V.C.

Another consideration in the development of an IDE to support FIOM

construction is the availability and format of the component system external interface

definitions used in constructing the FIOM. Can an IDE be developed that can construct a

model of the real-world entities involved in the interoperation of a federation of systems

from any component system external interface definition? Or are there certain practical

limitations that must be imposed on this definition in order to support process

automation? Section V.D.2.a(2) discusses the assumptions imposed on the component

system external interface definition in the initial prototype OOMI IDE implementation.

 154

An additional consideration addressed in developing a prototype OOMI IDE is

the number and capabilities of the intended user(s) of the system. Is the IDE to be used

by a single interoperability engineer on a single workstation, or by multiple engineers

across a system network? What capabilities are interoperability engineers expected to

possess? Are they expected to be knowledgeable in the inner workings of each of the

systems proposed for inclusion in a federation or in just the domain to which the

proposed federation resides? As indicated in [CY01], for the initial prototype OOMI IDE

implementation, the interoperability engineer is presumed to be an experienced software

engineer that is knowledgeable in the proposed federation’s domain namespace, i.e., he is

familiar with the terminology and representations used for defining real-world entities

whose state and behavior are shared among systems in the federation. In addition, the

initial prototype OOMI IDE is targeted for used by a single interoperability engineer on a

single workstation with provisions for future multi-engineer use across a network.

If future federation development requirements dictate a multi-user, network based

IDE implementation, then consideration must be given to whether a centralized or

decentralized approach is to be used for model construction and storage. In a centralized

approach to model construction, creation of the Federation Entities (FEs) used to model

the real-world entities involved in system interoperation and the federation representation

of those entities would be centrally controlled, with component representation creation

responsibility distributed among the group of participating interoperability engineers. In

a decentralized approach, interoperability engineers would be free to add to or modify the

FEs and their defining federation representations as long as prescribed guidelines were

followed in the names and representations chosen for federation model creation.

Similarly, FIOM storage could be accomplished in either a centralized or decentralized

manner. In a centralized FIOM storage strategy, the information used for FIOM

construction as well as the completed FIOM would be located on a centralized FIOM

server with access provided to each of the connecting IDE clients. In a decentralized

storage approach, this information would be divided between each of the IDE clients.

C. FEDERATION INTEROPERABILITY OBJECT MODEL (FIOM)
CONSTRUCTION PROCESS
In order to provide a better understanding of where computer aid can assist the

interoperability engineer in developing a model of the real-world entities involved in the

interoperation of a federation of systems, I first look at defining a process for

constructing an interoperability object model for a specified system federation, the

FIOM. As depicted in the Figure V-1 use-case model of the candidate FIOM

construction process, I propose a five-phase process for FIOM construction. These five

 155

phases are 1) Load Component System External Interface, 2) Manage Federation

Entities, 3) Register Component Class Representation (CCR), 4) Update Federation

Ontology, and 5) Generate System-Specific Translator Information. There is not a firm

order for execution of these phases; Load Component System External Interface, Manage

Federation Entities and Update Federation Ontology can be performed independently.

However, Load Component System External Interface and Manage Federation Entities

must be accomplished prior to Register CCR, and Register CCR must occur prior to

Generate System-Specific Translator Information.

FIOM Construction
Process

Update Federation On tology

Component System External
Inte rface Schema

FIOM Database

Ontology Database

Ontology Librarian

Manage Federation Entities

<<search>>

Add Component System External
Interface

nn

<<incl udes>>

Inteoperabil ity Engineer

Request Ontology Update

<<communicate>>

Translator Information DatabaseGenerate System Specific
Translator Information

Register Compone nt Class
Representation

<<search>>

<<includes>>

Tra nsla tion Lib rary

<<search>>

Figure V-1. Use-Case Model of Candidate FIOM Construction Process

 156

1. Add Component System External Interface
As discussed in Section IV.C.1.b(1), the real-world entities involved in federation

system interoperation are captured in the FIOM as Federation Entities (FEs). An FE

includes component and federation models of these real-world entities as well as the

relationships and translations required to resolve any differences between models.

A component model of a real-world entity is constructed from information

contained in the component system’s external interface. A component system’s external

interface specifies the state and behavioral information exported from or imported to the

component system. From this information an interoperability engineer can identify

entities in the real world to which the exported or imported information pertains. These

real-world entities are modeled as classes under the OOMI. These classes, captured in

the FIOM as Component Class Representations (CCRs), represent the component

system’s perspective of the real-world entities involved in the system interoperation. The

Add Component System External Interface phase of FIOM development is responsible for

creating CCRs from the information extracted from a component system’s external

interface. These CCRs are included with the FE used to represent the real-world entity in

the FIOM during the Register CCR development phase. The process of defining a

component system’s CCRs from its external interface definition is one area targeted for

application of computer aid in the OOMI IDE.

 157

Definition of a component system’s CCRs from its external interface specification

is repeated for each component in a federation. In order to interoperate, systems must

share information and operations used to model real-world entities of common interest.

However, each component may present a different model of these entities making it

difficult to determine that the models describe the same entity. In order to achieve

interoperation among these components, the interoperability engineer must determine

when two different models refer to the same real-world entity. Comparing syntactic and

semantic information used to describe the models facilitates this determination. This

syntactic and semantic information is extracted from a component system’s external

interface definition during the Add Component System External Interface phase of FIOM

construction and saved in the CCRs defined from the external interface specification as

CCR Syntax and CCR Semantics components, respectively. Details of the process used in

the OOMI IDE prototype for constructing these components are described in

Section VI.B.1. Extraction of syntactic and semantic information from a component

system’s external interface definition and use of that information to correlate real-world

entity models is another area where the OOMI IDE can provide computer aid to the

interoperability engineer.

2. Manage Federation Entities (FEs)
Determining the real-world entities involved in the interoperation of systems in a

federation can be done in either a top-down or bottom-up manner. The Manage

Federation Entities phase provides the interoperability engineer with the ability to define

the FEs used to characterize these real-world entities in a top-down fashion. Bottom-up

FE definition is discussed in Section V.C.3. Manage Federation Entities provides the

ability for the interoperability engineer to display the FIOM as well as modify its contents

by adding or removing federation components from the model.

The ability to modify the FIOM provided in the Manage Federation Entities

phase is designed to support the top-down definition of the FEs that comprise the

interoperation among systems. During this phase the interoperability engineer can

specify the FE, initial Federation Entity View (FEV), and corresponding Federation Class

Representation (FCR) with defining FCR Schema for each real-world entity defining the

interoperation. The terms used for defining the FE, FEV and FCR comprise an ontology

used to describe the federation’s representation of the real-world entities involved in the

interoperation, termed the Federation Ontology in Chapter IV. Federation Ontology

management is covered in Section V.C.4.

Along with providing the capability for the interoperability engineer to specify the

contents of the FCR Schema for a federation entity, the Manage Federation Entities

phase enables the automatic generation of syntactic and semantic information used to

help correlate component representations of the entity with the federation representation.

The generated syntactic and semantic information is captured as FCR Syntax and FCR

Semantics components, respectively, and added to the corresponding FCR in the FIOM.

Details of the syntactic and semantic generation methodology are covered in

Section VI.B.1.

 158

The interoperability engineer is also provided the ability to display the contents of

the FIOM during the Manage Federation Entities phase. This capability includes the

ability to view the FIOM as a whole or to focus on any of its FEs or their constituent

components.

3. Register Component Class Representation (CCR)
The capability to display and modify the contents of the FIOM presented in the

previous section is also provided during the register CCR phase. However, the Manage

Federation Entities phase’s focus is on defining the FE’s used to characterize the real-

world entities involved in the interoperation while the Register CCR phase is focused on

adding the component model of a real-world entity to the FEV that has the same

perspective of the real-world entity as the CCR being registered. Therefore, the Register

CCR phase is concerned with 1) finding the FE and FEV that correspond to a CCR

Schema being registered; 2) modifying the FIOM if necessary to provide an FE with FEV

whose FCR Schema attribute and operation sets are in one-to-one correspondence with

the CCR Schema attribute and operation sets; 3) adding the CCR, with constituent CCR

Schema, Syntax, and Semantic components to the FEV whose FCR Schema provides the

required one-to-one correspondence; and 4) adding translations necessary to resolve any

representational differences between the CCR Schema being registered and its

corresponding FCR Schema.

a. Finding FE Corresponding To CCR Being Registered
The first step in registering a CCR is to locate the FE in the FIOM used to

model the same real-world entity as the CCR. Computer aid can be applied to this task

by using the syntactic and semantic information contained in the CCR and previously

stored with each FCR in the FEV. Details of the methods available for assisting the

interoperability engineer in finding an FE corresponding to the CCR being registered can

be found in Chapter III. Although the IDE can provide computer-aid for matching CCRs

to the appropriate FE, the interoperability engineer must provide the ultimate

determination of whether a CCR and FCR refer to the same real-world entity.

 159

b. Modifying FIOM to Provide Required Correspondence Between
CCR and FCR Schema

If there is no FE in the FIOM that corresponds to the same real-world

entity as the CCR being registered, then the interoperability engineer must create a new

FE for this real-world entity, with view corresponding to that presented by the CCR

Schema. Such would be the case when adding the first component system model of a

real-world entity to the FIOM. The newly created FE will include an FEV with FCR

Schema containing attribute and operation sets that exhibit a one-to-one correspondence

with the CCR Schema attribute and operation sets. That is, a function f: CCR FCR

must exist mapping the CCR Schema attribute and operation sets (CCR(Αε, Ωε)) to FCR

Schema attribute and operation sets (FCR(Αε, Ωε)) that is one-to-one and onto and

whose operations are behaviorally equivalent. New FCR Syntax and FCR Semantics

components will be generated from this FCR Schema component and added to the new

FEV. The interoperability engineer is responsible for defining the FCR Schema

attributes and operations that correspond to the CCR Schema attribute and operation sets.

If an FE is found in the FIOM for the real-world entity modeled by the

CCR being registered, then the interoperability engineer must either find an existing FEV

within the FE that has the same view of the real-world entity as the CCR being registered,

or must add such an FEV to the FE. The views (FEVs) of the FE are examined to

determine the relationship between the Schema properties of the CCR being registered

and those of each FCR defined for the FE’s views.

If there is an existing FEV within the FE such that there is a one-to-one

correspondence between the attribute and operation sets of the CCR Schema being

registered and those of the FEV’s FCR Schema, and the operation sets are behaviorally

equivalent, then the CCR, with component CCR Schema, CCR Syntax, and CCR

Semantics, is added to this FEV.

If the FE does not contain a view whose FCR Schema attribute and

operation sets have a one-to-one correspondence with the CCR Schema attribute and

operation sets or the operation sets are not behaviorally equivalent, then a new FEV with

FCR Schema whose attribute and operation sets exhibit a one-to-one correspondence

with the CCR Schema attribute and operation sets and whose operations are behaviorally
 160

equivalent must be added to the FE. The new FEV will be derived from an existing view

of the containing FE and its defining FCR Schema constructed either through

specialization or generalization of the FCR Schema from the existing view. Details of

the process for modifying the FIOM to provide an FE with FEV whose FCR Schema has

the required correspondence between its attribute and operation sets and those of the

CCR Schema being registered are provided in Appendix A.

c. Adding CCR to FEV Whose FCR Schema Exhibits a One-To-
One Correspondence with the CCR Schema Being Registered

Once an FEV is found whose FCR Schema attribute and operation sets are

in one-to-one correspondence with the CCR Schema attribute and operation sets, the

CCR is added to the FEV and relationships between component and federation models of

the real-world entity are established. The CCR, with component CCR Schema, CCR

Syntax, and CCR Semantics, is added to this FEV and an association established between

the CCR Schema and the FEV’s FCR Schema. Details of the process for adding a CCR

to the FEV whose FCR Schema exhibits a one-to-one correspondence with the CCR

Schema being registered are provided in Appendix A.

d. Adding Translations Between Component And Federation Class
Representations Of Real-World Entity

After finding or creating an FEV whose FCR Schema has the same

perspective of the real-world entity as the CCR being registered and after adding the CCR

to this FEV, the next task is to define the translations required to convert between the

federation and component representations of that view.

The first step in defining the translations is determining whether a

translation is required and whether the required translation is needed to convert from

component to federation representation or from federation to component representation.

A translation is required whenever source and destination representations of shared

information and operations exhibit differences caused by heterogeneities of hardware and

operating systems, organizational models, structure, presentation, or meaning. The basic

rule in determining the direction of required translation is that if a component system

provides a mechanism for exporting state information about an entity via a send or return

action or for invoking an operation on another system via either a call, create, or destroy

 161

action, then a translation will be required to convert from the component representation to

the federation representation. Conversely, if a component system provides a mechanism

for importing state information or for servicing an external operation invocation, then a

translation will be required to convert from the federation representation to the

component representation.

When creating translations, an interoperability engineer should be

cognizant of whether there are potential consumers for information being produced by a

system, or for prospective consumers whether there are systems capable of producing the

desired information. Otherwise, creating a translation for unneeded or unavailable

information will unnecessarily tax the resources available to the federation developer.

Information regarding potential consumers or producers is available in the FCR-CCR

Translation classes defined for an FE; however, because of the incremental process used

in FIOM construction full knowledge of available producers and consumers would not be

know prior to FIOM completion. A means for determining this information at the start of

FIOM creation would be beneficial, perhaps through pre-processing of a component

system’s external interface definition, and is identified as an area for future research.

Once it is determined that a translation is required and the direction of

translation identified, the interoperability engineer must supply the required translation.

Computer aid can be applied to translation definition in two areas. First, correspondences

between the attribute and operation sets contained in the FCR and CCR Schemas can be

used to produce a framework for the translations required to resolve representational

differences between the Schemas. Second, automated access to a library of commonly

used functional translations can be provided to facilitate reuse during translation

definition. Once attribute and operation mapping and functional transformation

definition is completed for a translation, that translation is added to the FEV that contains

the FCR and CCR for which the translation is defined, and an association established

between the translation and the concerned FCR and CCR Schemas.

4. Update Federation Ontology

 162

The OOMI includes a Federation Ontology to be used in defining federation

model components during FIOM construction. Use of an ontology enables the

standardization of terminology and representation across the federation. The ontology

provides a means for adhering to naming and presentation standardization efforts while

not constraining federation terminology use when approved standards are not sufficient to

meet the requirements for the desired integration effort.

During the Update Federation Ontology phase of FIOM development, the

interoperability engineer can provide additions, deletions, and modifications to this

Federation Ontology for subsequent access during FE creation in the Manage Federation

Entities or Register CCR phases of FIOM development. The Federation Ontology can be

produced specifically for the federation being created or it can be derived from an

industry or domain specific standard and expanded or restricted as appropriate for the

federation being constructed.

5. Generate System-Specific Translator Information
During the Generate System-Specific Translator Information phase of FIOM

development, information is extracted from the FIOM for use by a specific system

translator. Depending on the architecture chosen for translator implementation, a specific

translator may not require all of the data contained in the FIOM to resolve modeling

differences among the systems it is associated with. For example, in a wrapper-based

implementation where the translator is included in a wrapper surrounding each system in

the federation, the translator is only concerned with converting exported or imported

information and operations between the wrapped system’s model and the federation

model of the real-world entities defining the shared information. Extracting only that

information required for use by the specified system translator from the FIOM reduces

the amount of information required by the translator to just that which is relevant to the

system to which the translator is associated.

D. OOMI IDE PROTOTYPE

 163

Based on the FIOM construction process outlined in Section V.C, a prototype

Integrated Development Environment (IDE) is proposed as part of the OOMI. The

prototype OOMI IDE addresses many of the development considerations called out in

Section V.B and assists the interoperability engineer in creating an interoperability model

for a system federation through application of computer aid to the FIOM construction

process outlined in Section V.C. Major components of the prototype OOMI IDE include

the: 1) User Interface; 2) FIOM Construction Manager consisting of the Federation Entity

Manager, Component Model Correlator, and Translation Generator; 3) Translator

Information Generator; 4) Federation Ontology Manager; 5) FIOM Database;

6) Translation Library; 7) Federation Ontology Database; and 8) Translator Information

Database. Figure V-2 illustrates the primary components of the prototype OOMI IDE.

Federation
Ontology
Database

Translator
Information

Database

FIOM Construction Manager

Federation
Entity

Manager

Component
Model

Correlator

Translation
Generator

Translation
Information
Generator

Federation
Ontology
Manager

User Interface

Translation
Library

Extract

FIOM Database

Figure V-2. OOMI IDE Block Diagram

 164

1. User Interface
The user interface provides a GUI-based portal for the interoperability engineer to

input and manipulate information required for FIOM construction, Federation Ontology

management, and the extraction of system-specific information from the FIOM for use by

the translator. Further detail on the OOMI IDE user interface components and display

organization is provided in Section V.E

2. FIOM Construction Manager
The FIOM Construction Manager utilizes information contained in a component

system’s external interface definition and entered by an interoperability engineer to

construct a model of the information shared among component systems of the federation.

The FIOM Construction Manager includes a Federation Entity Manager, Component

Model Correlator, and Translation Generator.

a. Federation Entity Manager
The Federation Entity Manager provides the capability for creating and

modifying the FEs used to capture component and federation models of the real-world

entities involved in the interoperation among federation systems. FE creation involves

1) initial definition of a federation model for each of the real-world entities involved in

system interoperation; 2) creation of a component model of the real-world entities

involved in the export or import of information and operations from the specific

component systems in the federation; 3) modification of the FE and included federation

model (if necessary) to include FEVs that coincide with the views presented by the

various component systems’ perspectives of an entity; and 4) addition of a component

system’s model of a real-world entity to the FEV providing the same perspective of the

entity as the component model.

(1) FE Creation. FE creation can be accomplished in either a

top-down or bottom-up manner. During top-down FE creation, done during the Manage

Federation Entities phase of FIOM construction, the interoperability engineer knows up

front that certain information is to be shared between federation components. This

information may come from knowledge of the information and operation requirements of

a component system, knowledge of the information and operations a component makes

available to other systems, a desire to eliminate duplication of information or operations
 165

by components of the federation, or specification by the federation development funding

authority that certain information and operations shall be shared among systems.

The interoperability engineer specifies the FE, initial FE view

(FEV), and corresponding FCR with defining FCR Schema comprising the federation

model of this view from this prior knowledge. The prototype OOMI IDE enables top-

down FE creation using information 1) input by the interoperability engineer;

2) contained in a specified component system’s model of a real-world entity; or

3) contained in the Federation Ontology. Choice 2) above might be used for FE creation

in the event that one of the component system definitions of a real-world entity were

designated as the “standard” or federation representation with which other component

representations must interoperate.

During bottom-up FE creation, done during the Register CCR

phase of FIOM construction, the Federation Entity Manager uses details of the

information and operations exported from or imported to a component system to identify

the real-world entities whose state and behavior may be shared among systems. An

object model of a component system’s external interface is created for comparison with

existing federation models of shared real-world entities using the Component Model

Correlator discussed in Section V.D.2.b. Comparison is done to determine whether the

component model corresponds to an existing federation model or identifies a new real-

world entity for sharing. New entities are consequently targeted for FE creation. From

this information the interoperability engineer specifies the FE, initial FEV, and

corresponding FCR with defining FCR Schema for the real-world entities defining the

interoperation. FCR Syntax and FCR Semantics components used in correlating

component and federation models of the real-world entities involved in system

interoperation are created from the FCR Schema by the Component Model Correlator

discussed in Section V.D.2.b. Component model creation, discussed in Section

V.D.2.a(2), must be completed prior to initiating bottom-up FE creation.

To enhance interoperability with systems added to the federation

during later modifications, terminology and representations used in FE creation should be

taken from the Federation Ontology where possible or nominated for inclusion in the

 166

Federation Ontology if not. The terminology contained in the Federation Ontology can

be derived from naming standardization efforts such as the DII COE XML Registry or

FDMS namespace [DII01, FDM01]. Utilizing a sanctioned naming standard provides an

added benefit should future interoperation with systems complying with such standards

be required. In this case little or no modification to the FIOM and FIOM-dependent

wrapper-based translators would be required. Federation Ontology management is

covered in Sections V.C.4 and V.D.4.

Whether acquired by top-down or bottom-up means, the

information required for FE and FCR creation is captured by the OOMI IDE as an XML

Schema which will be used to automatically generate the FCR Schema defining the real-

world entity’s shared information and operations. The Department of Defense (DoD) is

counting on XML and XML-related technologies to enable information dissemination

and to resolve many interoperability issues. DoD Directive 8320.1, DoD Data

Administration [DDA91], authorizes the establishment of and assigns responsibilities for

DoD data administration to plan, manage, and regulate data within the Department of

Defense. The Defense Information Systems Agency (DISA) is designated as the lead

agency responsible for executing the policy and procedures and making DoD data

standards available to the community. DISA is using XML as its common data exchange

format in support of its Defense Information Infrastructure Common Operating

Environment (DII COE) data engineering strategy [CY01].

The FCR Schema is automatically generated from this XML

Schema through a transformation process. Transformation involves the use of XML data

binding technology to convert the XML Schema into language-specific class definitions,

initially targeting the Java programming language [CY01]. The FCR Schema thus

created provides the federation model for the real-world entities involved in the

interoperation.

(2) Component Model Creation. The next function handled by

the Federation Entity Manager is the creation of a component system object model of the

real-world entities whose information and operations are exported from or imported to a

component system. This component system object model is created by the

 167

interoperability engineer using Federation Entity Manager functionality and displays

during bottom-up FE creation as discussed in Section V.D.2.a(1). While an object model

of the interoperation among systems could be constructed from any component system

external interface representation, the prototype OOMI IDE discussed in this dissertation

uses XML Schema to represent the external interfaces of the component systems being

integrated [ABK00].

Although the external interface for a candidate federation

component might not be described in terms of the object paradigm, [GL99] indicates that

defining the external interface in terms of a number of classes that represent a system’s

shared state and behavior is technically feasible. That, coupled with DoD’s move toward

adoption of XML as its common data exchange format and the ability to use XML data

binding to transform the XML rendering of a component system’s external interface into

classes to be used for determining the real-world entities involved in the interoperation

among systems, makes the assumption that a component system’s external interface be

defined in terms of an XML Schema reasonable [CY01].

A key pre-condition for the use of the OOMI IDE for constructing

a model of the interoperation among systems in a federation is that each system’s external

interface is defined in terms of one or more XML Schemas, each corresponding to a real-

world entity modeled by the system. The schema captures the attributes and operations

defining the component system’s perspective of the real-world entity as well as syntactic

and semantic information providing data on the contents, structure and meaning of the

entity’s attributes and operations. The Federation Entity Manager provides the capability

to open the XML Schema file defining the component system external interface and to

create a corresponding class representation for each real-world entity defined by the

XML Schema.

This class representation, captured in the FIOM as a CCR Schema,

is generated from the XML Schema using XML data binding. The Federation Entity

Manager uses XML data binding during the Add Component System External Interface

phase to automatically generate a CCR Schema corresponding to the real-world entities

whose information and operations are shared by the component system.

 168

(3) Modifying FIOM (If Necessary) to Add Component Model

to FE. From the CCR thus created, the interoperability engineer either locates an existing

FE in the FIOM that pertains to the same real-world entity as the CCR or modifies the

FIOM to add an FE for this entity during the Register CCR phase of FIOM development.

Help in locating an existing FE is provided by the Component Model Correlator

discussed in Section V.D.2.b. If during CCR registration there is no FE that corresponds

to the same real-world entity as the CCR being registered, then the interoperability

engineer must create a new FE for this real-world entity. The Federation Entity Manager

provides the functionality for defining a new FE with initial FEV containing an FCR with

defining FCR Schema corresponding to the CCR Schema being registered. The

Federation Entity Manager also provides the functionality required to add the CCR to the

newly created FEV.

If the FIOM contains an FE defined for the real-world entity

modeled by the CCR being registered, then the interoperability engineer must either find

an existing FEV within the FE whose defining FCR Schema has the same view of the

real-world entity as the CCR being registered, or must add such an FEV to the FE. The

Federation Entity Manager assists the interoperability engineer in adding a new FEV to

the FE and in adding the CCR to the corresponding FEV. Details of FCR Schema

Inheritance Hierarchy creation and modification are found in Appendix A.

(4) Adding Component Entity Model to FE. Once an FE with

FEV and FCR Schema corresponding to the CCR Schema being registered is either found

in the FIOM or created, the Federation Entity Manager provides the capability to add the

CCR, with included CCR Schema, CCR Syntax, and CCR Semantics components to the

FE. CCR Syntax and CCR Semantics components are created from the CCR Schema by

the Component Model Correlator discussed in Section V.D.2.b during the Add

Component System External Interface phase. They are used in correlating component

and federation models of the real-world entities involved in system interoperation. In

addition, the Federation Entity Manager adds translations, created by the Translation

Generator discussed in Section V.D.2.c, to the FE during the Register CCR phase of

FIOM development. These translations are used to resolve representational differences

 169

between component and federation models of the real-world entities involved in system

interoperation.

b. Component Model Correlator
The Component Model Correlator is responsible for establishing

correspondences among information exported from or imported to component systems in

a federation. These correspondences are used during the Register CCR phase of FIOM

construction to identify the real-world entities involved in system interoperation and to

create the FEs used to model a real-world entity in the FIOM. To establish these

correspondences, the Component Model Correlator constructs CCR and FCR Syntax and

Semantics components from the information contained in a component system’s external

interface description or input by the interoperability engineer. Details of CCR and FCR

Syntax and Semantic component construction are provided in Chapter VI.

As discussed in Section IV.C.1.a, each component system may have a

different model of the real-world entities identified in the system’s external interface

definition. Correlation of these models is necessary for systems interoperation.

Correlation can be accomplished either by direct comparison of the component system

models or by defining a “standard” model for a real-world entity and comparing each

component model to the standard. As presented in Section IV.C.1.b(1), different

perspectives provided by the various component system models of a real-world entity are

captured in the OOMI as different views (FEVs) of an FE. For each FEV an FCR

provides the “standard” representation of that view. Comparing each component

representation of a real-world entity with previously defined “standard” view

representations enables the interoperability engineer, with IDE assistance, to determine

the relationships among component models.

 170

The OOMI IDE correlation method involves a two-phase process, first

screening FEVs on the basis of included semantic information and subsequently on the

basis of the included syntactic information. Each phase produces a correlation score

whereby candidate FEVs can be ranked according to best potential match. The IDE also

provides the capability to choose selected FEVs from the first phase of the correlation

process for submission to the second phase. The expectation is that the first phase will be

used to eliminate obvious mismatches while the second phase will be used to zero-in on

potential matches. For each phase of the screening process, a threshold value can be set

to minimize the number of potential matches that have to be examined by the

interoperability engineer. Although the IDE provides computer-aid for matching CCRs

to the appropriate FE, the interoperability engineer must provide the ultimate

determination of whether a CCR and FCR refer to the same real-world entity. Details of

the class correlation process are covered in Chapter VI.

c. Translation Generator
Given corresponding federation and component models of a real-world

entity whose information and operations are shared among systems, the OOMI IDE

assists the interoperability engineer during the Register CCR phase of FIOM construction

with defining translations required to resolve representational differences between

models. Computer aid is provided to the interoperability engineer in three areas. First,

using correspondences between component and federation attributes and operations

identified by the user, the OOMI IDE Translation Generator provides a framework for

translation definition. Second, the OOMI IDE provides facilities for creation and

maintenance of a library of pre-defined translation definitions for insertion into this

translation framework. Third, the OOMI IDE provides facilities for user customization

of the translations used for representational difference resolution.

 171

The user is presented with a graphical representation of the CCR and FCR

Schemas from an FEV and then given the capability to match attributes and operations

between the two representations of that view via a “click-to-select” procedure. From the

user’s selections a translation “skeleton” is created that maps a source attribute or

operation representation to the corresponding destination attribute or operation.

Differences in meaning and structural representation will automatically be resolved by

the mapping procedure through the associations linking representations established by the

user. Differences in presentation are resolved by the addition of functional

transformation routines to the translation skeleton. These functional transformation

routines can be selected from a library of previously defined common translations or

created by the interoperability engineer. Once attribute and operation mapping and

functional transformation definition is completed for a translation, that translation is

added to the FEV containing the FCR and CCR for which the translation is defined, and

an association established between the translation and the involved FCR and CCR

Schemas.

Translations between the federation and component system

representations of an entity are implemented as operations of an association class

between the corresponding CCR and FCR, termed an FCR-CCR Translation class in the

OOMI. Significant consideration has been given toward the use of the eXtensible

Stylesheet Language (XSL) to define the translations. The declarative nature of XSL and

the availability of a number of open-source tools for use in effecting the translations

made XSL appear to be the technology of choice for defining the required translations,

and XSL Transformation (XSLT) the leading choice for implementation of the wrapper-

based translator [ABK00, Kay00]. However, we determined that the facilities to perform

other than simple functional transformations provided with the current XSLT

recommendation proved inadequate for the types of functional transformations required

in integrating existing legacy systems, such as the conversion of a geographic position

from a latitude/longitude to a Military Grid Reference System (MGRS) representation.

The ability to define such transformations using the capabilities provided by a procedural

or object-oriented language enables us to handle such requirements.

Design and development of the Translation Generator for the initial

prototype OOMI IDE was completed by Lee [Lee02]. The initial prototype Translation

Generator enables the interoperability engineer to construct the translation framework

from user-identified correspondences. Future implementations will incorporate a

translation library for predefined functional transformation storage and retrieval as well

as provide assistance to the interoperability engineer in identifying attribute and operation

correspondences.

3. Translator Information Generator

 172

The Translator Information Generator implements required functionality from the

Generate System-Specific Translator Information phase of FIOM construction to extract

information from the FIOM for use by a specific system translator. Depending on the

architecture chosen for translator implementation, a specific translator may not require all

of the data contained in the FIOM to resolve modeling differences among the systems it

is associated with. This information is output to the Translator Information Database

discussed in Section V.D.8 for subsequent use during run-time by a specified system

translator.

A source model translator is used to convert from the source model of the

exported information or operation to the corresponding federation model of that

information or operation. Therefore, if a separate translator is implemented for each

component in the federation, the source model translator is only concerned with those

FEs which include a CCR defined for the source system. Consequently, information

extracted from the FIOM for the system’s source model translator would consist of any

FEs that include a CCR defined for that system. These FEs would include the

translations required to resolve representational differences between the component and

federation models of the exported information and operations. However, if a single

source model translator is implemented for all of the components in the federation, the

translator would require the information contained in all of the FE’s in the FIOM.

The destination model translator is used to convert from the federation model of

the information imported to a system or the operations requested from the system to the

destination model of that information or operation request. Therefore, if a separate

translator is implemented for each component in the federation, the destination model

translator is only concerned with those FEs that include a CCR defined for the destination

system. Consequently, information extracted from the FIOM for the system’s destination

model translator would consist of any FE that includes a CCR defined for that system.

These FE’s would include the FCR Schema Inheritance Hierarchy used to resolve

differences in view between the federation model of the imported information and

operation signatures and the destination system’s component model as well as the

translations required to resolve representational differences between corresponding

views. However, if a single destination model translator is implemented for all of the

components in the federation, the translator would require the information contained in

all of the FE’s in the FIOM.

For the initial OOMI IDE prototype, a single source and destination model

translator is implemented for all of the components in the federation. Therefore the

Translator Information Database includes the entire FIOM for the federation.

 173

4. Federation Ontology Manager
The Federation Ontology Manager provides the capability to create and manage a

federation-specific ontology of terms and representations used for defining the federation

representations of the real-world entities involved in the interoperation among systems.

The Federation Ontology Manager enables a designated member from the federation

development team to create an initial Federation Ontology for the FIOM under

construction and to control subsequent modifications to the ontology. The initial

Federation Ontology can be constructed from an industry, organization, or domain

specific ontology such as DISA’s DII COE XML Registry or DMSO’s FDMS, or created

specifically for the FIOM under development [DII01, FDM01]. In addition, when FIOM

requirements necessitate use of terminology outside of that provided by the industry,

organization, or domain ontology used as the Federation Ontology baseline, the

Federation Ontology Manager supports creation of a change recommendation to the

baseline ontology.

Specifically, the Federation Ontology Manager provides the capability to:

• Search an industry, organization, or domain-specific ontology for terminology
related to the federation domain,

• Import relevant information into the Federation Ontology,
• Supplement the industry, organization, or domain specific ontology with

federation unique terminology, and
• Capture the federation unique terminology to support industry, organization, or

domain-specific ontology change recommendation.

For the initial OOMI IDE prototype, the interoperability engineer is required to

provide the terminology and representation used for elements of the federation model

during FE creation. Implementation of the Federation Ontology Manager is planned for

future versions of the OOMI IDE prototype.

5. FIOM Database
The OOMI IDE is used to construct an object model of the real-world entities

whose information and operations are shared among systems in a federation. A separate

object model, termed an FIOM under the OOMI, is constructed for each federation or

federation configuration considered for interoperability using the OOMI. For each

federation or federation configuration, a unique FIOM is created, each consisting of a

 174

collection of Federation Entities (FEs), the components comprising each FE, and the

relationships linking the FEs and their constituent parts. For each FIOM created or under

construction, the OOMI IDE maintains a data store of the FIOM components and their

relationships in order that the interoperability engineer might incrementally construct the

FIOM over time or use an existing FIOM as a baseline for deriving an interoperability

model for a new federation. The FIOM database provides the persistent storage

mechanism for maintaining a FIOM’s contents in the OOMI IDE. The Initial OOMI IDE

prototype uses XML data binding technology for achieving the FIOM persistent storage

capability [BOD01, Lee02].

6. Translation Library
The Translation Library provides a store of common functions for use in

constructing FCR-CCR Translation class methods. The Translation Generator will

provide the capability for searching the store for pertinent translation functions and for

including them in the translation skeleton generated from the user-identified mapping of

CCR and FCR Schema attributes and operations. The Translation Library and associated

search functionality are planned for implementation in a future OOMI IDE prototype.

7. Federation Ontology Database
The Federation Ontology Database contains a compilation of the “standard”

terminology and representations to be used when constructing the federation

representation of the real-world entities involved in the interoperation among systems.

This federation ontology should be used for defining the names, data types, field lengths,

integrity constraints, etc. used in FE, FEV, FCR and FCR Schema construction. Creation

and management of the database is provided by the Federation Ontology Manager

discussed in Section V.D.4. The Federation Ontology Database is planned for a future

OOMI IDE prototype release.

8. Translator Information Database
The Translator Information Database contains a translator-specific extract from

the FIOM database created for each translator in a federation. Information contained in

the database for each federation translator consists of any FE that includes a CCR defined

for the system or systems that the translator interfaces with. For the initial OOMI IDE

prototype, a single data store including all of the FEs contained in the FIOM is provided.
 175

Persistent storage of the Translator Information Database is provided using XML data

binding technology [BOD01, Lee02].

E. OOMI IDE PROTOTYPE USER INTERFACE DESIGN

1. OOMI IDE GUI Components
To support the FIOM construction process described in Section V.C, the OOMI

IDE GUI provides the following components as depicted in Figure V-3. The FIOM

Construction Phase Folders provide user access to the IDE functionality and information

displays used to support the five phases of FIOM construction covered in Section V.C.

The OOMI IDE Toolbar enables the interoperability engineer to select the functionality

necessary for constructing an interoperability object model for a specified federation of

systems. The Directory Pane provides a hierarchical listing of either the component

system or federation model representation of the real-world entities whose state and

behavior are to be shared between systems in the federation, depending on FIOM

construction phase. The Display Pane provides either a textual or graphical

representation of the component system external interfaces, a class representation of

those external interfaces, or a graphical representation of the federation model, including

the entities, views, and representations that comprise the model. Again, the information

displayed is dependent on the FIOM construction phase.

2. FIOM Construction Phase Folders
The OOMI IDE uses a series of five tabbed folders to distinguish the functionality

and display information available during the five phases of FIOM construction. The

tabbed folders corresponding to the five FIOM construction phases are: ADD Component

System External Interface, MANAGE Federation Entities, REGISTER Component Class

Representation (CCR), UPDATE Federation Ontology, and GENERATE System-

Specific Translator Information.

3. OOMI IDE Toolbar, and Directory and Display Panes
Functionality available via the OOMI IDE Toolbar and information presented via

the Directory and Display Panes varies based on the FIOM construction phase. In

addition, certain display information is only displayed in specific construction phases.

An overview of the toolbar, directory and display panes, and other support windows

contents is provided for each of the FIOM construction phase folders.
 176

FIOM Construction Phase Folders

OOMI IDE Toolbar

Directory Pane Display Pane

Figure V-3. OOMI IDE GUI Components

a. ADD Component System External Interface
In the first folder, ADD Component System External Interface, the IDE

provides functionality via the OOMI IDE Toolbar to 1) load the XML Schemas that

define the external interface of a component system in the federation, 2) generate a

Component Class Representation (CCR) for each component model of a real-world entity

defined by the XML Schema comprising the system’s external interface definition, and

3) generate the syntactic and semantic information for the CCR used to correlate

component and federation representations of the real-world entities involved in the

interoperation. During this phase, the Directory Pane is used to provide a hierarchical

listing of the CCRs generated from the component system external interface while the

Display Pane is used initially to view the contents of the component system’s external

interface definition, and subsequently to view the content of the component classes

generated from that definition. The XML Schema used to define the component system

external interface can be viewed as either a textual or graphical representation.

 177

Generated component classes can be viewed either as the programming language

representation of the class or as the corresponding Unified Modeling Language (UML)

representation [BRJ99]5. Toolbar, Directory, and Display contents for the Add

Component System External Interface folder are illustrated in Figure V-4.

Figure V-4. ADD Component System External Interface Folder Display and
Functionality

b. MANAGE Federation Entities
In the second folder, MANAGE Federation Entities, the Directory Pane

provides a hierarchical listing of FIOM composition. The Display Pane provides a

graphical UML depiction of the selected FIOM information5. The OOMI IDE Toolbar

provides the capability for selecting the information to be displayed in the Display Pane

as well as specifying the level of FIOM detail that the interoperability engineer wants to

display. This capability provides three levels of abstraction for displaying the model of

5 Class models are viewed as a tree structure vice a UML diagram in the initial

OOMI IDE prototype.
 178

the federation interoperation- the FIOM level for an overview of the entities comprising

the interoperation for the entire federation, the Federation Entity (FE) level for

displaying a specific interoperation entity, or the Federation Entity View (FEV) level for

seeing the details of the federation representation of a view. In addition, the OOMI IDE

Toolbar provides the capability to modify the contents of the FIOM by adding or

removing entities (FEs), entity views (FEVs), or Federation Class Representations

(FCRs) comprising the interoperation. Figure V-5 illustrates the contents of the Toolbar,

Directory, and Display for the MANAGE Federation Entities folder.

Figure V-5. MANAGE Federation Entities Folder Display and Functionality

c. REGISTER Component Class Representation
In the REGISTER Component Class Representation (CCR) folder the

Directory Pane provides a hierarchical listing of CCRs to be added to the FIOM. The

OOMI IDE Toolbar includes the functionality available in the MANAGE Federation

Entities folder and adds the capability for adding a CCR to the FEV whose FCR Schema

 179

attribute and operation sets exhibit a one-to-one correspondence with the CCR Schema’s

attribute and operation sets.

In addition to the normal Directory and Display Panes, a Class

Correlation Window is displayed in the REGISTER CCR folder in order to help the

interoperability engineer locate the federation view representation corresponding to a

component system class representation being registered. It provides the capability to

screen federation entities using the syntactic and semantic information stored with a CCR

and FCR. The capability to set a threshold value for determining the display of screening

results is provided for each screening phase as well as the capability to view the results of

the correlation effort for verification by the interoperability engineer. Toolbar, Directory,

and Display contents for the REGISTER CCR folder are illustrated in Figure V-6.

Class Correlation Window

Figure V-6. REGISTER Component Class Representation Display and Functionality

Coincident with the capability for adding a CCR to the FEV is the

functionality to define the translations required to resolve differences between the

federation and component representations of the view depicted by the FEV’s FCR
 180

Schema and the CCR Schema being registered. In addition to providing the capability to

display the information presented in the MANAGE Federation Entities folder, the

Display Pane includes a Translation Generation window, shown in Figure V-7, that

provides the capability to match attributes and operations from corresponding FCR and

CCR Schemas during translation definition.

Translation Generation Window

Figure V-7. REGISTER CCR Folder Translation Generation Window

From this mapping of FCR and CCR Schema attributes and operations, the

Translation Generator creates a translation framework that the interoperability engineer

can modify by adding functions from the Translation Library or other custom conversion

methods as required. Figure V-8 depicts the resulting translation skeleton created from

the attribute and operation mapping previously identified by the interoperability engineer.

d. UPDATE Federation Ontology
The UPDATE Federation Ontology folder replaces the Directory and

Display panes displayed in the three prior folders with the Federation Ontology Window.

The Federation Ontology window provides the capability to search a designated industry,

 181

organization, or domain-specific ontology for terminology related to the real-world

entities involved in the interoperation among systems. The Federation Ontology Window

provides toolbar selections to facilitate the search and to add selected search results to the

federation ontology. The toolbar also enables the ontology librarian to extend the

federation ontology with program-approved terminology based on nominations from the

interoperability engineer entered during the Manage Federation Entities or Register CCR

phases. Finally, the UPDATE Federation Ontology folder OOMI IDE toolbar provides

the functionality for providing a report of the terminology extensions approved by an

ontology librarian for use in submitting recommendations to the appropriate naming

standardization authority. Implementation of the UPDATE Federation Ontology folder

is not included in the initial OOMI IDE prototype.

Translation Skeleton

Figure V-8. Translation Generated During REGISTER CCR Phase

e. GENERATE System-Specific Translator Information
The GENERATE System-Specific Translator Information folder enables

the interoperability engineer to extract the specific FIOM information needed by a

 182

component system’s translator. The toolbar provides functionality to select a component

system for extracting system-specific translator information from the FIOM and to

designate the location for storing such information for a component system translator’s

use. The Directory Pane provides a list of the FEs contained in a specified FIOM,

enabling display of their components. The Display Pane is used for viewing the dialog

boxes used by toolbar functionality. The GENERATE System-Specific Translator

Information folder is not implemented in the initial OOMI IDE prototype.

F. SUMMARY
Under the Object-Oriented Method for Interoperability (OOMI) an integrated

model of the real-world entities whose state and behavior are shared among systems in a

federation, a Federation Interoperability Object Model (FIOM), is constructed prior to

runtime for use in resolving differences among component system models of those real-

world entities during runtime system interoperation. In this chapter, the process for

constructing an FIOM is suggested and several areas where computer aid could be

applied to the process identified. From the suggested FIOM construction process and

areas identified for computer aid application, a top-level design for the construction of an

OOMI IDE prototype is proposed. Included in the proposed top-level design, is the

design for the candidate user interface implemented in an initial prototype of the OOMI

IDE. Design and implementation of the prototype IDE for the OOMI were initiated in

[CY01] and continued under [Lee02] and [She02].

 183

THIS PAGE INTENTIONALLY LEFT BLANK

 184

VI. COMPONENT SYSTEM OBJECT CORRELATION UNDER
THE OBJECT ORIENTED METHOD FOR

INTEROPERABILITY (OOMI)

A. CORRELATION OF COMPONENT SYSTEM AND FEDERATION
REPRESENTATIONS OF A REAL-WORLD ENTITY
As discussed in the Chapter III introduction, the first step in constructing an

interoperability object model for a federation of systems, the Federation Interoperability

Object Model (FIOM), is determining the real-world entities that define the

interoperation among systems. Identification of these real-world entities, modeled as

Federation Entities (FEs) in the OOMI, can be done in either a top-down or bottom-up

manner. When done top-down, the interoperability engineer uses his knowledge of

information to be shared between systems to define the FEs. When defined bottom-up,

the interoperability engineer must reconcile information exposed by the component

systems in the federation to identify opportunities for data exchange or joint task

execution. This information is used to define the FEs that delineate the interoperation

among systems.

Top-down definition of FEs is fairly straightforward. The Manage Federation

Entities capability provided in the OOMI Integrated Development Environment (IDE)

enables the interoperability engineer to specify an FE for inclusion in the FIOM from

information either 1) included in an XML Schema specification of the federation

representation of a real-world entity, 2) contained in the Federation Ontology, or 3) input

by the interoperability engineer. An XML Schema specifying the federation

representation of a real-world entity might be available in the event that one of the

component system definitions of a real-world entity were designated as the “standard” or

federation representation with which other component representations must interoperate.

Information required for FE definition could also be extracted from the Federation

Ontology if sufficient information were available or input by the interoperability engineer

otherwise.

 185

Bottom-up definition of FEs is more involved. Because of potential variations in

what information different component systems might view as important to model and

differences in how that information might be represented, it might not be obvious that

two systems are referring to the same real-world entity. By reconciling information

contained in the external interfaces of federation components, the interoperability

engineer can determine when systems refer to the same real-world entities and can use

this information to specify the FEs defining the interoperation among systems. This can

be done in one of two ways. One option is to compare the information exposed in the

external interface of all of the components in the federation in order to determine areas of

commonality for use in defining the FEs. Another option is to compare the information

exposed in the external interface of a component system against previously registered

FEs to determine if they refer to the same real-world entity as the component system

being registered, adding a new FE when a corresponding model of the real-world entity

cannot be found in the FIOM.

As discussed in Section IV.C.1.b an FE encapsulates both the component and

federation representations of real-world entities involved in the interoperation among a

federation of systems. In order to distinguish between differences in scope, level of

abstraction, or temporal validity of the attributes and operations used to model the same

real-world entity on different systems, one or more Federation Entity Views (FEVs) will

be defined for each FE. In addition, differences in how an FEV is represented on a

specific system due to heterogeneities of hardware and operating systems, organizational

models, structure, presentation, or meaning are captured as various Component Class

Representations (CCRs) of that FEV. Finally the federation representation of an FEV is

modeled in the FIOM as a Federation Class Representation (FCR).

Following definition of the FEs used to represent the real-world entities involved

in the interoperation among systems, correspondence must be established between a

component representation of a real-world entity, modeled as a CCR in the FIOM, and the

federation representation, modeled as the FCR. The method chosen for bottom-up

identification of FEs in the initial OOMI prototype implementation is to compare the

component representation of a real-world entity against the FEs previously added to the

FIOM, adding new FEs when a corresponding model of the real-world entity cannot be

found in the FIOM.

 186

The correlation of component system and federation representations of a real-

world entity is the focus of this chapter. A detailed discussion of the correlation

methodologies incorporation in the OOMI IDE is presented.

B. OOMI CORRELATION METHODOLOGY
The correlation methodology selected for the OOMI IDE is an adaptation of

existing research in the information retrieval and software reuse communities to the

problem of determining correspondence between different representations of the same

real-world entity. The principle goal of the OOMI correlation methodology is to provide

a phased approach that results in increasing precision in class correlation while

maintaining a high level of recall. Thus, a multi-level approach was chosen for

correlation of component and federation representations in the OOMI IDE.

The approach first exploits semantic information found in textual descriptions of

the component and federation representations of a real-world entity. A keyword

matching technique similar to that used in Personal Librarian’s (PL’s) full-text retrieval

capability [BFH+95] is used to compare component system descriptive information with

corresponding information maintained for the federation representation of the real-world

entities involved in the interoperation. This first phase is designed to eliminate federation

representations that are obviously not related to the component representation being

registered from further consideration by the computationally more expensive second

phase. The IDE provides two mechanisms for down-selecting the list of candidates for

consideration by the second phase. First, the IDE enables the interoperability engineer to

set a semantic correlation threshold value based on the percentage of keywords matched

between component and federation representations for display of candidate matches.

Second, the interoperability engineer can selectively choose from the list of federation

representations whose percentage of keywords matched is above the threshold value to

pass-through to the second phase. Details of the semantic matching process are contained

in Section VI.B.2.a.

 187

The second phase of the correlation effort uses a neural network based approach

similar to that used by Li and Clifton in SEMINT [LC94] to explore structural similarities

between component and federation representations to determine their correspondence. Li

and Clifton’s use of database content information in SEMINT provided a limited seman-

tic discrimination capability. Using the database content, they were able to distinguish

between two elements that had the same structural characteristics but whose actual values

indicated that they were not related. For example, by using data content statistics one

might be able to distinguish between an employee ID and a transaction timestamp, even

though both items could use a six-digit integer to represent them. The neural network

based approach used in the OOMI IDE is focused on the use of field specification level

information for determining syntactical correspondence between representations.

However, additional data content level information such as may be available with pattern

limitations, minValue, maxValue type constraints, or through run-time collection may be

exploited to provide a semantic correlation capability as well. Sections VI.B.1.b and

VI.B.2.b provide details of the OOMI IDE syntactic correlation process.

1. Generating Syntactic and Semantic Information Used in the
Correlation Process

The first step in the correlation process is the generation of the syntactic and

semantic information needed for component and federation model correlation. As

introduced in Chapter V, this information is generated for each CCR during the Add

Component System External Interface phase of the FIOM construction process.

Equivalent information is generated for an FCR as FEs are added to the FIOM during

either the Manage Federation Entities or Register CCR phases.

a. Generating Components Used By Semantic Matching Process
As discussed in Section VI.B, the OOMI semantic matching process uses

a keyword matching technique similar to that used in PL’s full-text retrieval capability.

In order to correlate component and federation representations of a real-world entity, the

semantic matching algorithm requires a list of keywords used by the component system

and the federation to describe a real-world entity. Keyword information for a component

system representation of a real-world entity is included in the XML Schema(s) used to

characterize the component system’s external interface. For the federation representation

of a real-world entity, this information can be obtained from an XML Schema

representation of that information, extracted from the Federation Ontology, or directly

entered by the interoperability engineer. Table VI-1 provides a list of the fields defined

in the XML schema from which keyword descriptions can be obtained [Pug01].

 188

Table VI-1. XML Schema Fields Used for Keyword Determination (From [Pug01])
Field

Attribute Details
xsd:element “name” The name attribute typically equates to the field name used in

the underlying database.

xsd:element “type” For schemas using global types. This attribute’s value is usually
descriptive of the kind of data in the subtype. (e.g. “date_type”)

xsd:documentation N/A The text in this element is the “description” field from the data
dictionary. It is typically a human-readable free text explanation
of the field’s use or format.

xsd:attribute “name” Gives amplifying information about a simple or complex type.

xsd:enumeration “value” Used to constrain the values of types. Usually used to limit a
message field to several values which will reveal the use of the
message (e.g.. “SUB”, “SURF”, “AIR”)

Keyword information for the component representation of a real-world

entity is obtained from the XML Schema used to define a component system’s external

interface. Keyword information is not extracted directly from the XML Schema, but

instead it is obtained from the CCR Schema created from this information during the Add

Component System External Interface phase of FIOM construction. Keyword

information is extracted from the CCR Schema and stored with a CCR as a CCR

Semantics component.

Keyword information for the federation representation of a real-world

entity is obtained from an XML Schema used to describe the real-world entity, from

information describing the entity input by the interoperability engineer taken from the

Federation Ontology, from information specified by the interoperability engineer, or from

a combination of the three sources. Keyword information is not extracted directly from

these sources for use in the semantic correlation process. Instead, it is obtained from the

FCR Schema created from this information during the Manage Federation Entities or

Register CCR phases of FIOM construction. Keyword information is extracted from the

FCR Schema and stored with an FCR as an FCR Semantics component. Use of CCR and

FCR Schema for constructing CCR and FCR Semantics components provides a

consistent source for required keyword information and eliminates potential difficulties

 189

encountered during construction of CCR and FCR Semantics components when adding a

new view to a Federation Entity during FIOM construction.

b. Generating Components Used By Syntactic Matching Process
As was seen with the semantic matching process, component system

external interface XML schemas are built from the component system data dictionaries

and data definition language. In addition to the information used by the semantic

matching process, these XML schemas contain added data used by the syntactic matching

process. This includes information regarding schema structure, data element type,

frequency of occurrence, data size specifications, and data value constraints. This

syntactic information is also included in the generated CCR and FCR Schemas as was the

case with the semantic information.

The additional syntactic information contained in the CCR or FCR Schema

component is used to support a neural network based syntactic matching process. The

schema information required to support the syntactic matching process is captured in a

CCR or FCR Syntax component that is added to the FIOM directory. The neural network

based process uses two different subcomponents to support the correlation effort. The

first subcomponent, the CCR or FCR Syntax Vector, is associated with both CCR and

FCR Syntax components and contains a number of discriminator vectors used to capture

the data content and structure information from a CCR or FCR Schema. The second

subcomponent, the FCR Syntax Net, is associated only with an FCR Syntax component

and contains a trained neural network for an FCR that is used in the correlation process.

A discriminator vector is an array of values in the range [0.0, 1.0] used to

represent the data content and structure of each attribute and operation in the CCR or

FCR Schema. Information used to construct the discriminator vector is extracted from

the CCR and FCR Schema as was done in constructing the CCR and FCR Semantics

components in Section VI.B.1.a. The discriminator vectors are added to the CCR or FCR

Syntax Vector subcomponent, as appropriate.

 190

The discriminator vectors are used by a neural network based matching

technique to correlate component and federation representations of a real-world entity.

Discriminator vectors in each FCR Syntax Vector subcomponent are used to train a

neural network for the associated FCR Schema for later comparison with CCR Schemas

to determine if the FCR and CCR correspond to the same real-world entity in the problem

domain. A discriminator vector from the CCR Syntax Vector subcomponent

corresponding to an attribute or operation in the CCR Schema is provided as input to the

trained neural network and an evaluation of the similarity between the CCR Schema

attribute or operation and each attribute and operation in the FCR Schema is conducted.

The process for creating a discriminator vector is similar for both a CCR

and FCR. The first step is to create a CCR or FCR Syntax component with included

Syntax Vector subcomponent and add it to the FIOM directory. The CCR or FCR Syntax

Vector subcomponent contains a discriminator vector for each attribute and operation in

the CCR or FCR Schema. The discriminators used in creating a discriminator vector

differ between those used for creating a schema attribute vector and those used for

creating a schema operation vector.

Each component of the CCR or FCR Schema is first evaluated to

determine whether it is an attribute or operation. Data content and structure information

used by the OOMI IDE for creating an attribute’s discriminator vector includes

information concerning:

• data element structure,
• data element type,
• frequency of occurrence,
• data size specifications, and
• data value constraints

For attributes, the first data element structure discriminator, isComplex,

distinguishes whether an attribute is complex or atomic. If the attribute is complex (i.e.

the attribute is itself an object), discriminators numSubtypes, numReqdSubtypes, and

numOptSubtypes count the total, required, and optional number of subtypes defined for

that attribute, respectively. In addition, discriminator numOperations counts the total

number of operations defined for a complex attribute and its subtypes; numParameters

similarly counts the total number of parameters required by all the operations defined for

a complex attribute and its subtypes.

For atomic attributes, type specification discriminators indicate whether an

attribute is of type string, boolean, float, int, etc. For complex attributes the type

 191

specification discriminators provide a sum of the number of attributes of each type that

are defined for the complex attribute and all of its subtypes.

Frequency of occurrence discriminators minOccurs and maxOccurs

specify the minimum and maximum times an attribute may be included in a real-world

entity model. Data size specifications minLength and maxLength specify the minimum

and maximum length of an atomic attribute of type string, whereas for complex attributes

these discriminators specify the sum of the minLengths or maxLengths of all string

subtypes. Discriminators totalDigits and fractionDigits provide a count of the total digits

and fractional digits for attributes of type bigDecimal. For complex attributes these

values indicate the sum of the totalDigits or fractionDigits for all bigDecimal subtypes.

The first data value constraint discriminator, pattern, indicates whether a

restriction has been placed on the values allowed for string or numeric types. For atomic

attributes the discriminator is Boolean; for complex attributes the pattern discriminator

provides a count of the number of attributes among its subtypes that have a pattern

defined. Data value constraint numEnumerations provides a count of the number of

enumeration values specified for an atomic attribute or the sum of the number of

enumeration values of a complex attribute’s subtypes. Finally, minExclusive,

maxExclusive, minInclusive, and maxInclusive discriminators specify a lower and upper

bound to the values allowed for numeric types.

Information contained in an operation’s discriminator vector is limited to a

total count of the number of parameters required for operation invocation, and a count of

the number of parameters by type. For CCR or FCR Schemas whose operation

parameters are taken from its list of attributes, including additional values in the

operation’s discriminator vector would result in duplication of the information already

contained in the attribute discriminator vectors without providing any additional support

for discrimination among FCRs. Future correlator enhancements may include additional

operation parameter discriminators for those operation parameters that are distinct from a

CCR or FCR Schema’s attributes. Table VI-2 provides a list of the discriminators that

comprise a discriminator vector for each attribute or operation.

 192

Table VI-2. Metadata Based Discriminators Used in Syntactic Correlation Process
(After [She02])

Number Discriminator Description

Structural Information
1 propertyType Operation or Attribute
2 isComplex Describes whether an attribute is complex or atomic
3 numSubtypes If attribute is complex, number of subtypes
4 numReqdSubtypes If attribute is complex, number of required subtypes
5 numOptSubtypes If attribute is complex, number of optional subtypes
6 numOperations For Complex Attribute – total no. of operations defined for type
7 numParameters For Operation – number of parameters

For Complex Attribute – Sum of parameters for all operations
defined for that attribute and any subtypes

Type Specifications
8 string type java.lang.String type
9 boolean type primitive Boolean type
10 float type primitive float type
11 double type primitive double type
12 bigDecimal type java.math.BigDecimal type
13 int type primitive int type
14 long type primitive short type
15 short type primitive short type
16 other type type other than listed above

Frequency of Occurrence
17 minOccurs minimum number of times attribute must occur in class modeling

real-world entity
18 maxOccurs maximum number of times attribute may occur in class modeling

real-world entity
Data Size Specification

19 minLength For Atomic String Type Attribute – minimum length of string
For Complex Attribute– Sum of minLengths of all string
subtypes

20 maxLength For Atomic String Type Attribute – maximum length of string
For Complex Attribute – Sum of maxLengths for all string
subtypes

21 totalDigits For Atomic bigDecimal Type Attribute – total number of digits
included in attribute
For Complex Attribute – Sum of total number of digits for all
bigDecimal types

22 fractionDigits For Atomic bigDecimal Type Attribute – number of digits in
fraction part of attribute
For Complex Attribute – Sum of total number of digits in
fraction part for all bigDecimal types
Data Value Constraints

23 pattern For Atomic Attribute – restriction to values allowed for string
and numeric types
For Complex Attribute – number of attributes with pattern
defined

24 numEnumerations For Atomic Attribute – number of enumeration values for
attribute
For Complex Attribute – sum of number of enumeration values
for all subtypes

25 minExclusive lower open bound of interval defined for numeric attribute types
26 maxExclusive upper open bound of interval defined for numeric attribute types
27 minInclusive lower closed bound of interval defined for numeric attribute

types
28 maxInclusive upper closed bound of interval defined for numeric attribute

types

For Atomic Attributes – Specify the
data type

For Complex Attributes – sum of
the number of subtypes of each
type

For Operations – sum of the number
of parameters of each type

 193

Neural network input values for the OOMI IDE syntactic correlator are

required to be in the range [0.0, 1.0], signifying whether a neuron is triggered or not. In

order to satisfy this requirement, an algorithm must be provided mapping the metadata

provided for each attribute parameter to a discriminator value in the range [0.0, 1.0].

For some discriminators, such as minOccurs and pattern (for atomic

attributes), the Boolean nature of the discriminator enables a direct map to a 0 or 1 value.

Other parameters, such as numSubtypes, numReqdSubtypes, numOptSubtypes,

numOperations, numParameters, maxOccurs, minLength, maxLength, totalDigits,

fractionDigits, numEnumerations, minExclusive, maxExclusive, minInclusive, and

maxInclusive must be normalized to a value in the range of [0.0, 1.0]. For these values Li

and Clifton used a SIGMOID-like function in order to avoid false matches or false drops

that could occur when using a linear normalization function. For positive numeric values

in the range of [0.0, 100.0] Li and Clifton used the function

f(x) = 2 * (1/(1 + k-x) – 0.5) with k = 1.01 [Eq 6.1]

where x is the parameter value to be normalized [LC00]. For other numeric values that

may be positive or negative, they used the function

f(x) = 1/(1 + k-x) [Eq 6.2]

with k = 1.01 for values in the range of [-50.0, 50.0]. As each of the parameters

numSubtypes, numReqdSubtypes, numOptSubtypes, numOperations, numParameters,

maxOccurs, minLength, and numEnumerations are expected to have values in the range

[0.0, 100.0], we have adapted the function from Eq 6.1 for normalizing these parameters.

As parameters maxLength, totalDigits, and fractionDigits may have values that exceed

100 for complex attributes, a third function

f(x) = log(x + 1)/5 [Eq 6.3]

has been defined which provides adequate discrimination between values in the range of

[0, 100000]. Similarly, while parameters minExclusive, maxExclusive, minInclusive, and

maxInclusive may have either positive or negative values, suggesting the use of Eq 6.2
 194

for normalizing their values, the potential to exceed the bounds of [-50.0, 50.0]

prescribed for use of that equation has led to the use of Eq 6.3 for normalizing these

parameters as well.

Finally, for parameters such as an atomic attribute’s data element type, the

parameter is mapped to a vector of values, each in the range [0.0, 1.0]. This is done in

cases where the value assigned two parameters might incorrectly convey similarity

between the parameters. For example, for atomic data types, assigning a string parameter

a value of 0.1, a boolean a value of 0.2, a float a value of 0.3, etc. would imply that an

attribute of type string is more like a boolean than a float. However, if we instead assign

each possibility a vector of values where each value in the vector is either 0.0 or 1.0, then

we eliminate any incorrectly perceived “closeness” between values. For example, if we

represented a string by the vector <0.0, 0.0, 1.0>, a boolean by the vector <0.0, 1.0, 0.0>

and a float by the vector <1.0, 0.0, 0.0> then each would stimulate its own neuron in the

neural network and there would be no incorrect perceptions as to the relationships

between values. Table VI-3 and Table VI-4 provide a list of the discriminators used in

the OOMI IDE and the normalized value added to the attribute or operation parameter

discriminator vector for the listed discriminator value.

In addition to the CCR or FCR Syntax Vector subcomponents created for

the CCR and FCR, a trained neural network is created for each federation entity FCR.

The OOMI IDE uses a back-propagating neural net that is trained using supervised

learning until it maps all neuron stimuli values to the desired outputs within a given

threshold. The threshold value is set by the interoperability engineer using the OOMI

IDE GUI.

 195

Table VI-3. Discriminator Values Used for Syntactic Correlation (After [She02])

Number Discriminator Value to Vector

Structural Information
1 propertyType Operation – 0.0

Attribute – 1.0
2 isComplex If yes – 1.0

Otherwise – 0.0
3 numSubtypes For operation or atomic attribute – 0.0

For complex attribute - Value normalized to [0.0, 1.0] Note 1
4 numReqdSubtypes For operation or atomic attribute – 0.0

For complex attribute - Value normalized to [0.0, 1.0] Note 1
(subtype required unless minOccurs = 0)

5 numOptSubtypes For operation or atomic attribute – 0.0
For complex attribute - Value normalized to [0.0, 1.0] Note 1

(subtype optional only if minOccurs = 0)
6 numOperations For operation or atomic attribute – 0.0

For complex attribute - Value normalized to [0.0, 1.0] Note 1
7 numParameters For atomic attribute – 0.0

For operation – Value for # of parameters normalized to [0.0, 1.0] Note 1
For complex attribute – Value for sum of parameters for all operations

in subtype normalized to [0.0, 1.0] Note 1
Type Specifications

8 string type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

9 boolean type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

10 float type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

11 double type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

12 bigDecimal type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

13 int type If atomic attribute – < 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

14 long type If atomic attribute – < 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

15 short type If atomic attribute – < 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

16 other type If atomic attribute – < 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 >
If complex attribute or operation – Value normalized to [0.0, 1.0] Note 1

Note 1: Uses Eq 6.1: f(x) = 2 * (1/(1 + k-x) – 0.5) with k = 1.01

 196

Table VI-4. Discriminator Values Used for Syntactic Correlation (continued) (After
[She02])

Number Discriminator Value to Vector

Frequency of Occurrence
17 minOccurs If Optional – 0.0

Otherwise – 1.0
18 maxOccurs If not specified – Raw value = 1, normalized to [0.0, 1.0] Note 1

Otherwise - Value normalized to [0.0, 1.0] Note 1
Data Size Specification

19 minLength If operation, attribute not string, or minLength not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 1

20 maxLength If operation, attribute not string, or maxLength not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

21 totalDigits If operation, attribute not bigDecimal, or totalDigits not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

22 fractionDigits If operation, attribute not bigDecimal, or fractionDigits not specified –
0.0;

Otherwise - Value normalized to [0.0, 1.0] Note 2
Data Value Constraints

23 pattern If Atomic – If pattern defined – 1.0
 Else 0.0
For Complex Attribute – Value normalized to [0.0, 1.0] Note 1

24 numEnumerations If operation or numEnumerations not specified – 0.0;
Otherwise, Value normalized to [0.0, 1.0] Note 1

25 minExclusive If operation, attribute not numeric, or minExclusive not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

26 maxExclusive If operation, attribute not numeric, or maxExclusive not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

27 minInclusive If operation, attribute not numeric, or minInclusive not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

28 maxInclusive If operation, attribute not numeric, or maxInclusive not specified – 0.0;
Otherwise - Value normalized to [0.0, 1.0] Note 2

Note 1: Uses Eq 6.1: f(x) = 2 * (1/(1 + k-x) – 0.5) with k = 1.01
Note 2: Uses Eq 6.3: f(x) = log(x + 1)/5

As shown in Figure VI-1, the back-propagating neural net used in the

OOMI IDE consists of a totally connected network of nodes that can be divided into three

layers. The first layer, the input layer, contains N nodes, corresponding to the N

discriminators chosen to characterize the attributes and operation parameters from a CCR

or FCR Schema. The third layer, the output layer, contains M nodes, corresponding to

the M attribute and operation parameters contained in the FCR Schema. The second,

middle, layer is a hidden layer consisting of (N + M) / 2 nodes connecting the input and

output layers used in training the network.

 197

The network is trained by first assigning nominal weights to the edges of

the network, which is done automatically by the training algorithm. Then, the

discriminator vectors constructed for the attribute and operations of the neural net’s

corresponding FCR Schema are input to the network and an output determined for the

specified edge weights. This output is compared with the desired output for each

attribute or operation. The desired output for an attribute or operation consists of a

unique vector of M zeroes and ones, where M is the number of attributes and operations

contained in the FCR Schema. The edge weights are adjusted and the training effort

continued until the actual output is within tolerance of the desired result, as specified by

the user-entered threshold value. Once the error is reduced below the threshold value, the

network is considered trained and it is saved in the FCR Syntax’s Net subcomponent for

later use during component and federation class correlation.

1

N

4

3

2

M

1

3

2

1

2

Input Layer Output Layer

Hidden Layer

(N+M)/2 nodes

Discriminator

propertyType

isComplex

numSubtypes

numReqdSubtypes

maxInclusive

attribute_α

attribute_β

attribute_γ

attribute_ζ

FCR Schema Attribute

Figure VI-1. Back-Propagation Neural Network Architecture in OOMI IDE (After
[LC00])

 198

A description of the process used to create and train the neural network for

the GroundCombatVehicle_View1 FCR Schema depicted in Figure IV-7 follows. Input

to the training algorithm consists of the discriminator vectors constructed for each

attribute and operation in the FCR Schema. For example, in Figure VI-2 the

discriminator vectors for GroundCombatVehicle_View1 FCR_Schema attributes type,

position, time, and range are shown. These discriminator vectors, together with a target

result for each attribute and operation are input to the neural network’s training

algorithm. The target result consists of a vector of zeroes and ones whose length is equal

to the number of attributes and operations included in the FCR Schema. For this example

there are four attributes, type, position, time, and range, so there will be four values in the

target result vector. The target result vector will have a one as the first element and

zeroes for the remaining elements for the first attribute or operation parameter, a one as

the second element and zeroes for the remaining elements for the second attribute or

operation parameter, etc.

Figure VI-2. Example Neural Network Training Data and Target Result (After [She02])

Figure VI-3 shows the discriminator vector input and corresponding target

result output values and their relationship to the neural network being trained. When the
 199

neural network is input with the discriminator vector for an attribute or operation

parameter, the edge weights of the net will be adjusted until the output matches the target

value, within the threshold value tolerance. This process will be repeated for the

remaining attributes and operation parameters until the network has been trained for all

inputs. At this point the network is considered trained and can be used to recognize other

attributes or operation parameters having the same data content and structure.

1

N

4

3

2

M

1

3

2

1

2

Input Layer Output Layer

Hidden Layer

(N+M)/2 nodes

Discriminator

propertyType

isComplex

numSubtypes

numReqdSubtypes

maxInclusive

type range

Target Output
d1

d2

d3

d4

dN

d1

d2

d3

d4

dN

type range

FCR Schema Attributes

discriminators

 1

 0

 0

 0

0

0

0

1

Figure VI-3. Training OOMI IDE Neural Networks (After [LC00])

2. Using Syntactic and Semantic Information to Correlate Component

and Federation Representations of Real-World Entities
Using the syntactic and semantic information generated from the CCR and FCR

Schemas, the OOMI IDE assists the interoperability engineer in establishing a

correspondence between a component representation and the federation representation of

the real-world entities involved in system interoperation. Access to the correlation

functionality is provided via the OOMI IDE Correlation Window during the Register

CCR phase of FIOM development. The Correlation Window outlines a two-step process

for locating federation entities whose FCR Schema corresponds to the CCR Schema for a

component system class being registered.

 200

a. Semantic Correlation Process
The first step of the correlation process, semantic correlation, screens

FEVs using semantic information contained in their corresponding FCRs. The user

initiates the semantic correlation process by setting the semantic correlation threshold to

the desired value and then selecting the CCR for which a match is desired. The user can

adjust the semantic correlation threshold value to selectively set the level for displaying

potential matches. Once the threshold value is set and the user selects “Filter Using

Keywords”, the OOMI IDE will retrieve the CCR Semantics component for the CCR

selected and sequentially examine the FCR Semantics component for each FEV in the

FIOM. From the FCR Semantics component the semantic correlator will obtain the count

of the number of keywords in the CCR Semantics component matching a keyword in the

FCR Semantics component. The IDE will then normalize the count as the ratio of CCR

Semantics keywords matching FEV FCR Semantics keywords to the total number of

CCR Semantics keywords. This count will then be saved as the FEV keyword score and

the process repeated for the next FEV. After all the FEVs have been examined, the FEVs

will be ordered according to keyword match score, and the ordered list of FEVs whose

keyword match score exceeds the threshold value will be output to the IDE Correlation

Window.

b. Syntactic Correlation Process
Following the semantic correlation process, the syntactic correlation

algorithm attempts to find an FEV corresponding to the selected CCR using the trained

neural network associated with each FEV. The user will initiate the syntactic correlation

process by setting the syntactic correlation threshold to the value desired and then

selecting the FEVs returned by the previous keyword match process to be considered by

the syntactic matching routine. The user can adjust the syntactic correlation threshold

value to selectively set the level for displaying potential matches. Once the threshold

value is set and the user selects “Filter Using Neural Net”, the OOMI IDE will retrieve

the CCR Syntax Vector subcomponent for the CCR selected by the user.

 201

For each FEV selected for review, the OOMI IDE will use the

discriminator vectors contained in the CCR Syntax Vector subcomponent as input to the

neural network previously saved in the FEV’s FCR Syntax Net subcomponent. The

neural network will score each FCR Schema attribute and operation based on its

similarity to the CCR Schema attribute or operation represented by the input

discriminator vector. The result is provided as a vector containing a score for each FCR

Schema attribute and operation reflecting the similarity between it and the input CCR

Schema attribute or operation. Scores for each attribute and operation will be in the

range [0.0, 1.0] with a score of 1.0 signifying an exact correspondence between the CCR

and FCR discriminator vector values. For example, Figure VI-4 shows the discriminator

vectors for MechanizedCombatVehicle CCR attributes mcvType, mcvLocation, mcvTime,

and mcvRadius. When the neural network for the GroundCombatVehicle_View1 FCR is

input with the discriminator vector for MechanizedCombatVehicle CCR Schema attribute

mcvType as seen in Figure VI-5, then the resultant output vector

<0.980, 0.0001, 0.016, 0.014> indicates the similarity of CCR Schema attribute mcvType

to the FCR Schema attributes type, position, time, and range. In this example, CCR

Schema attribute mcvType appears most closely matched with FCR Schema attribute

type.

Figure VI-4. Discriminator Vectors for Example MechanizedCombatVehicle CCR

(After [She02])

 202

1

4

3

2

4

3

1

3

2

1

2

Input Layer Output Layer

Hidden Layer

Discriminator

propertyType

isComplex

length

type

range

Neural Net Output
1.0

0.0

0.0

0.0

0.0

mcvType

CCR Schema Attribute

discriminators

 0.980

 0.0001

 0.016

 0.014

28

time

position

d1

d2

d3

d4

d28

numSubtypes

numReqdSubtypes

16

Figure VI-5. Using Trained Neural Network to Evaluate Attribute and Operation
Correspondence (After [LC00])

The process is repeated, comparing each CCR Schema attribute and

operation with every FCR Schema attribute and operation, resulting in a CCR-FCR

Comparison Matrix containing scores of the comparison. Figure VI-6 illustrates the

CCR-FCR Comparison Matrix comparing the MechanizedCombatVehicle CCR to the

GroundCombatVehicle_View1 FCR.

type position time
mcvType

mcvTime
CCR Schema

Attributes

FCR Schema
Attributes

mcvLocation

mcvRadius

range
.980 .0001 .016 .014

.0007 .980 .020 .096

.003 .972 .027 .013

.012 .014 .0003 .985

Figure VI-6. Example CCR-FCR Comparison Matrix

 203

This process is repeated for the remaining FEVs selected for comparison

with the CCR. In order to facilitate comparison among FEVs as to which might offer the

closest match to the CCR being registered, a single value is computed for the CCR-FCR

Comparison Matrix. Determining the maximum value from each row of the CCR-FCR

Comparison Matrix and then computing the 2-norm of the resultant maximums provides

this single value. The ratio of this result to the 2-norm of the row maximums for a

perfect CCR-FCR match is then saved for comparison with other FCRs. The 2-norm or

length of a vector is computed by taking the square root of the sum of the squares of each

element in the vector [Ant94].

By using the row maximum, the FCR with the highest score (i.e. closest

match) for a CCR attribute or operation parameter, will contribute a higher value toward

the overall FCR score, regardless of which FCR attribute or operation parameter provided

the closer match. The 2-norm preserves the relative score between two FCR’s regardless

of which attribute or operation parameters contributed to the score, i.e., an equal score is

provided to two FCRs whose maximum attribute or operation parameter scores are equal.

In addition, the 2-norm provides a higher score to an FCR which provides a perfect or

near-perfect match for one or more CCR attributes or operation parameters than to an

FCR which doesn’t provide a close match with any of the CCR attributes or operation

parameters, even though the sum of the maximum attribute or operation parameter scores

may be equal. Figure VI-7 illustrates computation of the score for the CCR-FCR

Comparison Matrix using the process outlined above.

type position time range
Row Maximum

(X) (X)2

mcvType 0.980 0.0001 0.016 0.014 0.980 0.961
mcvLocation 0.0007 0.980 0.020 0.096 0.980 0.960
mcvTime 0.003 0.972 0.027 0.013 0.972 0.945
mcvRadius 0.012 0.014 0.0003 0.985 0.985 0.971

√∑(X2) 1.959

FCR Schema
Attributes

CCR Schema
Attributes

(as percent of maximum 2-norm) 97.93

Figure VI-7. Computing Single Value for CCR-FCR Comparison Matrix

 204

After all FEVs have been examined, the FEVs will be ordered according

to CCR-FCR Comparison Matrix score, and the ordered list of FEVs whose score

exceeds the threshold value will be output to the IDE Correlation Window. In addition,

the average of the semantic and syntactic scores is displayed in the Correlation Window

to further indicate similarity of the CCR being registered and the FCRs chosen for

review.

Results from the syntactic and semantic correlation methods are used as an

aid to the interoperability engineer for determining when component and federation

representations refer to the same real-world entity. Final determination of whether

component and federation representations correspond is the responsibility of the

interoperability engineer.

C. SUMMARY

 205

The correlation methodology implemented for the OOMI IDE is used to assist the

interoperability engineer in adding a Component Class Representation (CCR) to a

Federation Interoperability Object Model (FIOM) during the Register CCR phase of IDE

operation. Assistance is provided to the interoperability engineer in terms of computer

aid for finding the Federation Entity (FE) corresponding to the same real-world entity

modeled by the CCR. The OOMI IDE correlation methodology uses a two-phased

approach for establishing this correspondence. In the first phase, semantic information

taken from keywords used to describe component and federation models of a real-world

entity is used to establish the correspondence. In the second phase, details about the

structure and composition of the attributes and operations used to model the real-world

entity are used to correlate component and federation models. Potential correspondences

between a CCR and an FCR are provided in terms of a score for both the semantic and

syntactic phases of the correlation effort, or a combination of the two. Comparison of

scores among potential FCR matches will direct the interoperability engineer toward the

most likely match for a CCR. However, final determination of CCR-FCR

correspondence requires a one-to-one correspondence between the attribute and operation

sets of a potential CCR-FCR match as discussed in Section V.C.3.b. Determination of

attribute and operation correspondence and operation behavioral equivalence is the

responsibility of the interoperability engineer and is not automated in the OOMI IDE.

Implementation of the correlation methodology detailed in this chapter was

initiated by Pugh [Pug01] and continued under Shedd [She02]. While implementation of

the correlation methodology has not been completed, thereby precluding an assessment of

the method’s effectiveness, criteria for conducting such an assessment can be provided.

The primary criteria to be used for such an assessment are a determination of the

precision and recall attained by the search for the federation model of a real-world entity

corresponding to a component model being registered. In Section III.A precision is

defined as the ratio of the number of objects correctly correlated and the total number of

objects correlated, and recall is defined as the ratio between the number of objects

correctly correlated and the number of correct correlations possible. As applied to the

real-world entity model correlation problem, a calculation of precision will provide the

ratio of the number of FCR’s returned by the correlation methodology that are correct

matches for the CCR being registered to the total number of FCR’s returned as candidate

matches. Recall will provide a ratio of the number of FCR’s returned by the correlation

methodology as correct matches for the CCR being registered to the number of FCR’s

that are correct matches for the CCR being registered. As discussed in Sections VI.B.2.a

and VI.B.2.b the interoperability engineer can set a threshold for display of candidate

matches returned by either the semantic or syntactic correlation methodologies or by a

combination of the two methods. Values for precision and recall should be provided with

a range of threshold values used for returning candidate matches for each of these

possible alternatives.

 206

VII. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY
(OOMI) TRANSLATOR

A. TRANSLATOR OVERVIEW
Interoperability was previously defined as the ability to exchange information and

tasks between systems [LISI98, Pit97]. As mentioned in Section II.A.1, differences in

perspective, modeling constructs used, and application design specifications result in

heterogeneous modeling of the information and tasks to be shared among systems.

Resolution of these heterogeneities is required in order to enable system interoperation.

The purpose of the translator presented in this chapter is to resolve heterogeneities

among systems in order to enable their interoperation. As discussed in Section IV.C.1.a,

these heterogeneities can be categorized as either differences in view, indicating that two

systems have a different perspective on the characteristics required to model a real-world

entity, or differences in representation when systems differ on how those characteristics

are modeled. Under the Object-Oriented Method for Interoperability (OOMI), an

interoperability engineer captures differences in view and representation of the real-world

entities involved in the interoperation among systems in a Federation Interoperability

Object Model (FIOM). An FIOM is created for a specified federation of systems prior to

runtime using a specialized toolset, the OOMI Integrated Development Environment

(IDE) previously described in Chapter V.

The real-world entities involved in the interoperation among systems are modeled

as Federation Entities (FEs) in the OOMI. Differences among federation components on

what should be included in the model of these real-world entities are captured in the form

of one or more views for each FE, termed Federation Entity Views (FEVs) in the OOMI.

Differences in representation of the attributes and operations that comprise a view among

federation components are captured as various Component Class Representations (CCRs)

of the FEV. Each FEV also includes a standard representation of the view that is termed

a Federation Class Representation (FCR). FEVs are related in terms of their common

attributes and operations by means of an FCR Schema Inheritance Hierarchy that is

defined for each FE.

 207

The OOMI translator uses information contained in the FIOM created prior to

runtime for resolving heterogeneities among federation systems at runtime. The

translator uses the FCR Schema Inheritance Hierarchy to resolve differences in view

among systems, as caused by heterogeneities of scope, level of abstraction, and temporal

validity. The translator uses an FCR-CCR Translation class associated with each

component representation of a view (CCR) to resolve heterogeneities of hardware and

operating systems, organizational models, structure, presentation, and meaning. Figure

VII-1 illustrates the interaction between the translator and FIOM for a wrapper-based

implementation of the translator on both source and destination systems.

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator Destination Model Translator

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery _View1
artillery _View2
 ...
artillery _ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure VII-1. Source and Destination System Translator Implementation

B. TRANSLATOR ARCHITECTURAL ALTERNATIVES

Translator implementation can be adapted to accommodate a number of

federation architecture alternatives. In one implementation, the translator can be

employed as part of a software wrapper that logically envelops a component system. The

wrapper would function to intercept incoming and outgoing information from the

wrapped system and convert it from one model to another. In another implementation the

 208

translator could be realized as part of middleware that resides on a separate platform

between the source and destination systems. Translator placement determination is not a

topic of this dissertation; however, this section provides substantiation of translator

architectural compatibility.

In a wrapper-based implementation, translator functionality could be included in a

wrapper around either the source or destination systems, or around both source and

destination systems. Implementing the translator functionality as a wrapper around only

the source system would require the wrapper to convert the outgoing information from

the source model to the destination model prior to forwarding to the destination system.

A wrapper would not be required for the destination system as information received at

that system would already be provided in the destination model.

A source-system-only wrapper is implemented by incorporating both the source

and destination model translators in the source system wrapper as depicted in Figure

VII-2. In this illustration the source model translator intercepts outgoing messages from

Source
Model

Destination
Model

Intermediate
Model

Destination Model Translator

Source
System

Source Model Translator

Destinat ion
System

Federation Interoperability Object Model

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure VII-2. Source-System-Only Translator Implementation

 209

the source system and converts them from the source system model to an intermediate

model. This output is then forwarded to the destination model translator, also contained

in a wrapper surrounding the source system, where it is converted from the intermediate

model to the destination system model prior to forwarding to the destination system. A

source-system-only implementation could be accomplished without the use of an

intermediate model, converting directly from the source to destination model; however,

for a federation of n systems the number of required translations would increase from the

2n required with the use of an intermediate model to n(n-1) required without.

Similarly, implementing the translator functionality as a wrapper around only the

destination system would require the destination wrapper to convert incoming

information from the source to the destination model, possibly involving translation to an

intermediate model in the process. In this implementation, a wrapper would not be

required for the source system as the destination wrapper performs all data transfor-

mation. Figure VII-3 illustrates a destination-system-only wrapper implementation.

Source
Model

Destination
Model

Intermediate
Model

Source Model Translator

Source
System

Destination Model Translator

Dest inat ion
System

Federation Interoperability Object Model

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

Figure VII-3. Destination-System-Only Translator Implementation

 210

An additional architectural alternative would be to provide source model

translation functionality in a wrapper surrounding the source system and destination

model translation functionality in a wrapper surrounding the destination system. The

source wrapper translation functionality would convert outgoing information from the

source model to an intermediate model for transmission to the destination system. The

destination wrapper translation functionality would convert the incoming information

from the intermediate model used for transmission to the model expected by the wrapped

system. This architecture alternative is shown in Figure VII-1.

Another alternative for translator implementation is to provide both the source

and destination model translation functionality as part of middleware that resides on a

separate hardware platform between the source and destination systems in a hub-and-

spoke architecture implementation. All information exchanged among federation

systems would be routed from the source system to the hub where resident middleware

would convert the information from the source to the destination model prior to forward-

ing it to the appropriate destination. Figure VII-4 depicts this architectural alternative.

Source
Model

Destination
Model

Intermediate
Model

Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator

Destination
Model

Translator

Middleware

groundWeaponSystem

groundWeaponSystem _View1
groundWeaponSystem _View2
 ...
groundWeaponSystem _ViewJ

artillery

enemyOrderOfBattle

enemyOrderOfBattle _View1
enemyOrderOfBattle _View2
 ...
enemyOrderOfBattle _ViewK

artillery_View1
artillery_View2
 ...
artillery_ViewL

1*

federationEntityZ

federationEntityZ _View1
federationEntityZ _View2
 ...
federationEntityZ _ViewX

.

.

.

.

groundCombatVehicle _View1
groundCombatVehicle _View2
groundCombatVehicle _View3

groundCombatVehicle

 211
Figure VII-4. Middleware Translator Implementation

C. TRANSLATOR FUNCTION
The translator uses the FIOM created prior to runtime to dynamically resolve

differences in information shared among systems. As discussed in Section IV.C.1.a,

modeling differences for shared information consist of either differences in view or

differences in representation of a view for the real-world entity modeled. Differences in

view are resolved through exploitation of the information contained in the FCR Schema

Inheritance Hierarchy for the federation model of the real-world entity using Liskov and

Wing’s notion of behavioral subtyping [LW94]. Differences in view representation are

resolved by use of the translations included with the FCR-CCR Translation class

associated with each component system model of the real-world entity. As indicated in

Section IV.C.1.b(2), use of an intermediate representation for a real-world entity reduces

the number of translations required for a system with n representations of that entity from

n(n-1) to 2n. Therefore, the OOMI translator uses a two-step process, involving the use

of an intermediate representation, to reduce the number of required translations. In the

first step the source model of a real-world entity is translated to an equivalent

intermediate model of that entity. In the second step, this intermediate model is

translated to a behaviorally equivalent model suitable for use by the destination system.

In order to illustrate the translator functionality described in this chapter, a

continuing example is used to demonstrate translator action when exporting an instance

of a real-world entity from one system to another. For the example we use the ground

combat vehicle real-world entity introduced in Figure IV-2 and the different models used

to portray that entity on a hypothetical federation of systems. We describe how an

instance of the real-world entity exported from one system is transformed for use by an

application on another system in the federation that presents a different model of the real-

world entity than that provided by the source system. For our example System B will be

the source and System D the destination.

1. Source To Intermediate Model Translation

 212

A source model of a real-world entity is captured in the form of a CCR in the

FIOM. As discussed in Section IV.C.1.b(2), when defining a Federation Entity to depict

the information and operations shared between systems in a federation, for each

component representation of a real-world entity (CCR) there will be one, and only one,

FCR defined for that real-world entity. In addition, the FCR will be defined such that

there is a one-to-one correspondence between the CCR and FCR Schema attribute and

operation sets. Thus a CCR and its corresponding FCR share the same view of a real-

world entity. Therefore, translation from source to intermediate model of a real-world

entity requires only resolution of any differences in representation between the models.

The OOMI defines an object model of the real-world entities involved in the

interoperation among systems, the FIOM. The FIOM is constructed for a system

federation by extracting information contained in the component systems’ external

interfaces. As indicated in Section V.D.2.a(2), specification of a component system’s

external interface is provided in terms of an XML Schema description for each of the

real-world entities whose information or operations are shared by the system. The OOMI

IDE uses these XML Schemas in constructing the FIOM for a system federation. The

export and import of information required to accomplish information exchange and joint

task execution is achieved through the use of XML instance documents conforming to

these schemas. Communications among systems required to accomplish information

exchange and joint task execution are then achieved through the export and import of

messages in the form of XML instance documents conforming to these schemas.

Source to intermediate model translation first involves conversion of the informa-

tion exported by a source system from the source model format to an object represen-

tation of that information for use by the OOMI translator. This step involves converting

the information from the XML instance document representation of the exported message

to a corresponding object representation of that message. The next step involves

conversion from the source object representation to the corresponding intermediate object

representation. The final optional step entails converting the intermediate object

representation to an intermediate XML instance document representation if the federation

architecture uses XML for transferring information among systems.

a. Converting From XML to Object Representation of Exported
Information

Converting an exported message from an XML instance document

representation to a corresponding object representation is done using XML data binding

[BOD01]. For each message type exported from or imported to a component system, an

 213

XML Schema is used to define the allowable message contents. The OOMI IDE

generates equivalent class representations of these XML Schemas using data binding,

which it stores in the FIOM as CCR Schemas. As part of a generated class, the data

binding process automatically creates an unmarshal method used to convert an XML

instance document, conforming to the XML Schema used to generate the class, to an

instance of the generated class. Figure VII-5 illustrates the process for converting a

source XML instance document to its equivalent CCR Schema object and the relationship

between the XML instance document’s governing XML Schema and the CCR Schema

object’s defining CCR Schema.

<<becomes>>

(unmarshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>> <<instance of>>

Source XML Schema

Source XML Document

Figure VII-5. Process for Converting Source XML Instance Document to its Equivalent

CCR Schema Object

In order to convert an exported XML instance document to its equivalent

object representation, the translator must first determine which unmarshal method to use

for the conversion. The correct unmarshal method to use is the one contained in the CCR

Schema generated from the XML Schema to which the exported XML instance document

conforms. Location of the CCR Schema that corresponds to the exported source XML

instance document can be accomplished using one of three methods: 1) use of a standard

convention for naming XML instance documents, XML Schemas, and generated CCR

Schemas; 2) examination of the SchemaLocation attribute of the instance document root

element to determine the XML Schema to which the instance document conforms, using

a naming convention for determining the CCR Schema given the XML Schema; or 3) use

of a common, unique XML namespace Uniform Resource Identifier (URI) for both the

 214

XML Schema and instance document and saving that namespace URI with the CCR that

contains the generated CCR Schema for future reference.

The third method above is the one chosen for use in the initial prototype

OOMI IDE and translator. By saving the XML namespace URI of the XML Schema

used to generate a CCR Schema with its containing CCR, the xmlns attribute of a

received XML instance document can be used to locate the appropriate CCR Schema.

For example, Figure VII-6 depicts an XML document for an instance of the System B

MechanizedCombatVehicle shown in Figure IV-3. As seen in the figure, the namespace

URI (targetNamespace) for the XML instance document is "http://nps.navy.mil/cs/oomi/-

systemB/mechanizedCombatVehicle." Similarly, for the governing XML Schema (specified in

the instance document’s xsi:schemaLocation attribute) the namespace URI is also

"http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle" as shown in Figure VII-7. By

including this namespace URI with the CCR Schema generated from the Figure VII-7

XML Schema excerpt, the appropriate unmarshal method can be found for converting the

Figure VII-6 XML instance document to its equivalent object representation.

<?xml version="1.0" encoding="UTF-8"?>
< ="http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle"

="http://www.w3.org/2001/XMLSchema-instance"
="http://nps.navy.mil/cs/oomi/systemB

C:\Translator\OOMI\projects\testapps\mechanizedCombatVehicle.xsd">
 < >tank</ >
 < >
 < >
 < >1</ >
 < >A</ >
 </ >
 < >B222</ >
 < >A111</ >
 </ >
 < >
 < >16</ >
 < >14</ >
 < >41</ >
 < >U</ >
 </ >
 < >1200</ >
</ >

mechanizedCombatVehicle

mcvType mcvType
mcvLocation

utmZone
eastWest eastWest
northSouth northSouth

utmZone
mgrsEasting mgrsEasting
mgrsNorthing mgrsNorthing

mcvLocation
mcvTime

day day
hourTime hourTime
minuteTime minuteTime
localTimeZone localTimeZone

mcvTime
mcvRadius mcvRadius

mechanizedCombatVehicle

 xmlns
xmlns:xsi
xsi:schemaLocation

Figure VII-6. Source XML Document “mechanizedCombatVehicle.xml”

 215

<?xml version="1.0" encoding="UTF-8"?>
< ="http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle"

="http://www.w3.org/2001/XMLSchema" ="http://nps.navy.mil/cs/oomi/systemB"
="qualified" ="unqualified">

 < ="mechanizedCombatVehicle">
 < >
 < >
 < >A mechanizedCombatVehicle msgtype provides System B model of ground
 combat vehicle real-world entity for the example in Figure III-3.</ >
 </ >
 < >
 < ="systemB:mcvType"/>
 < ="systemB:mcvLocation"/>
 < ="systemB:mcvTime"/>
 < ="mcvRadius" ="systemB:distanceInKmType" ="0"/>
 </ >
 </ >
 </ >
 < ="mcvType">
 < >
 < />
 </ >
 < >
 < ="xsd:string">
 < ="4"/>
 < ="16"/>
 < ="tank"/>
 < ="personnelCarrier"/>
 < ="reconVehicle"/>
 < ="unknown"/>
 </ >
 </ >
 </ >
 < ="mcvLocation">
 < >
 < >
 < />
 </ >
 < >
 < ="utmZone" ="systemB:utmZoneType"/>
 < ="mgrsEasting" ="systemB:mgrsEastingType"/>
 < ="mgrsNorthing" ="systemB:mgrsNorthingType"/>
 </ >
 </ >
 </ >
 < ="mcvTime">
 < >
 < >
 < >The day of a month and timekeeping in hours and minutes of a calendar day,
 using the 24-hour clock system and an associated time zone.</ >
 </ >
 < >
 < ="day" ="systemB:dayType"/>
 < ="hourTime" ="systemB:hourTimeType"/>
 < ="minuteTime" ="systemB:minuteTimeType"/>
 < ="localTimeZone" ="systemB:localTimeZoneType"/>
 </ >
 </ >
 </ >
 < ="distanceInKmType">
 < ="xsd:integer">
 < ="0"/>
 < ="1200"/>
 </ >
 </ >

 .
 .
 .
</ >

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:annotation
xsd:documentation

xsd:annotation
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:documentation

xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minInclusive
xsd:maxInclusive

xsd:restriction
xsd:simpleType

xsd:schema

 targetNamespace
xmlns:xsd xmlns:systemB
elementFormDefault attributeFormDefault

 name

 ref
 ref
 ref
 name type minOccurs

 name

 base
 value
 value

 value
 value
 value
 value

 name

 name type
 name type
 name type

 name

 name type
 name type
 name type
 name type

 name
 base

 value
 value

Figure VII-7. Source XML Schema “mechanizedCombatVehicle.xsd” Excerpt

 216

Upon receipt of an XML instance document from the source system, the

translator determines the corresponding CCR Schema and invokes its unmarshal method

to convert the document to an equivalent object representation. The resulting CCR

Schema object is provided as input to the next translator step.

To illustrate this process, System B exports an XML instance document

describing an instance of its model of the GroundCombatVehicle real-world entity. The

exported “mechanizedCombatVehicle.xml” XML instance document is captured by the

source model translator and first converted to an equivalent object representation of the

exported information. Figure VII-8 shows a UML representation of the object generated

from the exported XML instance document depicted in Figure VII-6. In addition, the

XML instance document’s governing XML Schema (shown in Figure VII-7) and the

resultant object’s defining CCR Schema are included to complete the illustration.

b. Translation From Source Object Representation to Intermediate
Object Representation

Following conversion of the exported information to an object

representation, the information must be translated from the source model object

representation, a CCR Schema instance, to an intermediate object representation, an FCR

Schema instance. As described in Section IV.C.1.b(2), each CCR has exactly one FCR to

which it corresponds. Likewise, each CCR Schema corresponds to exactly one FCR

Schema. This FCR Schema is created during FIOM construction as described in Section

V.D.2.a(1). From Figure IV-3, it is seen that the System B MechanizedCombatVehicle

model of our ground combat vehicle real-world entity corresponds to view 1 of the real-

world entity. Thus, the MechanizedCombatVehicle CCR Schema instance will be

converted to its corresponding GroundCombatVehicle_View1 FCR Schema instance.

This translation is accomplished through the use of an FCR-CCR

Translation class defined by the interoperability engineer during FIOM construction. For

each component system representation of an FEV, the interoperability engineer defines

an FCR-CCR Translation class containing translate methods used to convert between

component and federation representations of the FEV, as described in

Section IV.C.1.b(3). These methods are used to translate the object representation of a

received XML instance document from a CCR Schema instance to an FCR Schema

 217

instance. Figure VII-9 illustrates the process for translating a CCR Schema instance to an

equivalent FCR Schema instance using the translate method from the FCR-CCR

Translation class associated with the CCR Schema.

mechanizedCombatVehicle_CCR_Schema:
MechanizedCombatVehicle_CCR_Schema

mcvType = tank
mcvLocation = 1A A111 B222
mcvTime = 161441U
mcvRadius = 1200

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<becomes>>

(unmarshal)

MechanizedCombatVehicle_CCR_Schema

mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius : DistanceInKmType

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<CCR Schema Object>>

<<CCR Schema>>

<<becomes>>

(Castor Source Generation)

<<conforms to>>

<<instance of>>

<< Source XML Document>>

<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/systemB

="http://www.w3.org/2001/XMLSchema -instance"
="http://nps.navy.mil/cs/oomi/systemB

C:\Translator\OOMI\projects\testapps\mechanizedCombatVehicle.xsd ">
 < >tank</ >
 < >
 < >
 < >1</ >
 < >A</ >
 </ >
 < >B222</ >
 < >A111</ >
 </ >
 < >
 < >16</ >
 < >14</ >
 < >41</ >
 < >U</ >
 </ >
 < >1200</ >
</ >

<< Source XML Schema>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/systemB

="http://www.w3.org/2001/XMLSchema ="http://nps.navy.mil/cs/oomi/systemB
="qualified " ="unqualified ">

 < ="mechanizedCombatVehicle ">
 < >
 < >
 < >A mechanizedCombatVehicle msgtype provides System B model of ground
 combat vehicle real -world entity for the example in Figure II I-3.</ >
 </ >
 < >
 < ="systemB:mcvType "/>
 < ="systemB:mcvLocation "/>
 < ="systemB:mcvTime "/>
 < ="mcvRadius ="systemB:distanceInKmType ="0"/>
 </ >
 </ >
 </ >
 < ="mcvType">
 < >
 < />
 </ >
 < >
 < ="xsd:string">
 < ="4"/>
 < ="16"/>
 < ="tank"/>
 < ="personnelCarrier "/>
 < ="reconVehicle "/>
 < ="unknown"/>
 </ >
 </ >
 </ >
 < ="mcvLocation ">
 < >
 < >
 < />
 </ >
 < >
 < ="utmZone" ="systemB:utmZoneType "/>
 < ="mgrsEasting ="systemB:mgrsEas tingType"/>
 < ="mgrsNorthing ="systemB:mgrsNorthingType "/>
 </ >
 </ >
 </ >
 < ="mcvTime">
 < >
 < >
 < >The day of a month and t imekeeping in hours and minutes of a calendar day,
 using the 24 -hour clock system and an associated time zone. </ >
 </ >
 < >
 < ="day" ="systemB:dayType "/>
 < ="hourTime ="systemB:hourTimeType "/>
 < ="minuteTime ="systemB:minuteTimeType "/>
 < ="localTimeZone ="systemB:localTimeZoneType "/>
 </ >
 </ >
 </ >
 < ="distanceInKmType ">
 < ="xsd:integer ">
 < ="0"/>
 < ="1200"/>
 </ >
 </ >

 .
 .
 .
</ >

mechanizedCombatVehicle

mcvType mcvType
mcvLocation

utmZone
eastWest eastWest
northSouth northSouth

utmZone
mgrsEasting mgrsEasting
mgrsNorthing mgrsNorthing

mcvLocation
mcvTime

day day
hourTime hourTime
minuteTime minuteTime
localTimeZone localTimeZone

mcvTime
mcvRadius mcvRadius

mechanizedCombatVehicle

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:annotation
xsd:documentation

xsd:annotation
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:documentation

xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minInclusive
xsd:maxInclusive

xsd:restriction
xsd:simpleType

xsd:schema

 xmlns "
xmlns:xsi
xsi:schemaLocation

 targetNamespace "
xmlns:xsd " xmlns:systemB "
elementFormDefault attributeFormDefault

 name

 ref
 ref
 ref
 name " type " minOccurs

 name

 base
 value
 value

 value
 value
 value
 value

 name

 name type
 name " type
 name " type

 name

 name type
 name " type
 name " type
 name " type

 name
 base

 value
 value

Figure VII-8. Converting From XML to Object Representation of Exported Information

 218

<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

FCR Schema Object

Figure VII-9. CCR Schema Object to FCR Schema Object Translation

For example, as previously mentioned, the MechanizedCombatVehicle

class used to model our ground combat vehicle real-world entity on System B

corresponds to view 1 of the real-world entity. Therefore, the GroundCombat-

Vehicle_View1__MechanizedCombatVehicle Translation class would be used to convert

from the source CCR Schema instance representation of our real-world entity to an

equivalent intermediate FCR Schema instance representation. Figure VII-10 depicts how

the translate(mechanizedCombatVehicle : MechanizedCombatVehicle) : GroundCombatVehicle_View1

method from this class would be invoked to effect this translation. Then, depending on

translator architectural implementation, this intermediate object representation could

either be forwarded directly to the Intermediate-to-Destination-Model-translation or,

optionally, converted into an XML Document representation of the intermediate object.

c. Converting From Intermediate Object Representation of
Exported Information to XML Instance Document
Representation

If the architecture used for translator implementation necessitates the use

of an XML instance document for transporting information between source and

destination systems, then it may be necessary to convert from the intermediate object

representation of the exported information to an equivalent XML document

representation. Such may be the case if the translator is implemented as a wrapper

around both source and destination systems and an XML instance document is used for

transporting information between systems as depicted in Figure VII-1.

 219

groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type = tank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

<<becomes>>

(translation)

GroundCombatVehicle_View1__MechanizedCombatVehicle

translate(mechanizedCombatVehicle: MechanizedCombatVehicle) : GroundCombatVehicle_View1

mechanizedCombatVehicle_CCR_Schema:
MechanizedCombatVehicle_CCR_Schema

mcvType = tank
mcvLocation = 1A A111 B222
mcvTime = 161441U
mcvRadius = 1200

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<CCR Schema Object>>

<<FCR-CCR Translation>>

Figure VII-10. Converting from Source to Intermediate Object Representations

Conversion from an intermediate object representation to an XML

instance document representation of the exported information is accomplished by use of

the marshal method generated with the FCR Schema defining the intermediate object

representation. XML data binding creates the marshal method for a class generated from

an XML Schema to convert an instance of the class to its equivalent XML representation.

If an intermediate XML document representation of the exported information were

required, then the translator would use the intermediate FCR Schema object’s marshal

method to convert the object representation to its equivalent XML instance document

representation. Figure VII-11 illustrates the process for converting an FCR Schema

object to its equivalent intermediate XML instance document representation and the

relationship between the FCR Schema object’s defining FCR Schema and the XML

instance document’s governing XML Schema.

 220

<<becomes>>

(marshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

Figure VII-11. Process for Converting FCR Schema Object to its Equivalent XML

Instance Document

As shown in Figure VII-12, the translator uses the marshal method defined

for the GroundCombatVehicle_View1 FCR Schema from our continuing example to

convert the groundCombatVehicle_View1 intermediate object representation of the

exported information to its equivalent “groundCombatVehicle_View1.xml” XML

instance document representation, detailed in Figure VII-13.

2. Intermediate To Destination Model Translation
Translation from an intermediate to a destination model of a real-world entity

defining an interoperation requires resolution of potential differences in view as well as

possible differences in representation between intermediate and destination models.

Unless the source and destination systems have the same view of the real-world entity

being modeled, the intermediate model created from the source model will have a

different view of the modeled real-world entity than the destination model. Intermediate

to destination model translation therefore first requires creation of an intermediate model

with the same view as the destination model and then resolution of differences in

representation between this new intermediate model and the destination model.

As discussed in Section IV.C.1.b(3), differences in view between intermediate

and destination models of a real-world entity are resolved through use of the FCR

Schema Inheritance Hierarchy defined for each FE in the FIOM. Differences in view

representation between intermediate and destination models are resolved using the FCR-

CCR Translation class associated with the destination system CCR.
 221

<<becomes>>

(marshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type = tank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

GroundCombatVehicle_View1_FCR_Schema

type : VehicleType
position : Position
time : Time
range : DistanceInNmType

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema>>

<< Intermediate XML Document>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema -instance
="http://nps.navy.mil/cs/oomi/fiomA

 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicleView1.xsd ">
 < >battleTank</ >
 < >
 < >
 < >392451</ >
 < >N</ >
 </ >
 < >
 < >0814413</ >
 < >W</ >
 </ >
 </ >
 < >
 < >16</ >
 < >22</ >
 < >41</ >
 < >Z</ >
 </ >
 < >720</ >
</ >

<< Intermediate XML Schema>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema " ="http://nps.navy.mil/cs/oomi/fiomA
="qualified ="unqualified">

 < ="groundCombatVehicleView1 ">
 < >
 < >
 < >This sample schema provided for example in Figure III -3.
 groundCombatVehicleView1 provides same perspective of ground combat vehicle
 real-world entity as System B mechanizedCombatVehicle model. </ >
 </ >
 < >
 < ="type" ="fiomA:vehicleType ="0"/>
 < ="fiomA:position ="0"/>
 < ="fiomA:time ="0"/>
 < ="range ="fiomA:distanceInNmType ="0"/>
 </ >
 </ >
 </ >
 < ="vehicleType">
 < ="xsd:string">
 < ="5"/>
 < ="16"/>
 < ="battleTank "/>
 < ="rocketLauncher"/>
 < ="truck"/>
 < ="personnelCarrier "/>
 < ="reconVehicle"/>
 < ="unknown"/>
 </ >
 </ >
 < ="position">
 < >
 < >
 < />
 </ >
 < >
 < ="latitude" ="fiomA:latitudeType "/>
 < ="longitude ="fiomA:longitudeType "/>
 </ >
 </ >
 </ >
 < ="time">
 < >
 < >
 < >The day of a month and timekeeping in hours and minutes of a calendar day,
using the 24-hour clock system and an associated time zone. </ >
 </ >
 < >
 < ="stdDay ="fiomA:stdDayType "/>
 < ="stdHourTime ="fiomA:stdHourTimeType "/>
 < ="stdMinuteTime ="fiomA:stdMinuteTimeType "/>
 < ="stdTimeZone" ="fiomA:stdTimeZoneType "/>
 </ >
 </ >
 </ >
 < ="distanceInNmType">
 < ="xsd:integer ">
 < ="0"/>
 < ="1000"/>
 </ >
 </ >

 .
 .

groundCombatVehicleView1

type type
position

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
position

time
stdDay stdDay
stdHourTime stdHourTime
stdMinuteTime stdMinuteTime
stdTimeZone stdTimeZone

time
range range

groundCombatVehicleView1

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:documentation

xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minInclusive
xsd:maxInclusive

xsd:restriction
xsd:simpleType

 xmlns "
xmlns:xsi "
xsi:schemaLocation

 targetNamespace "
xmlns:xsd xmlns:fiomA "
elementFormDefault " attributeFormDefault

 name

 name type " minOccurs
 ref " minOccurs
 ref " minOccurs
 name " type " minOccurs

 name
 base

 value
 value

 value
 value
 value
 value
 value
 value

 name

 name type
 name " type

 name

 name " type
 name " type
 name " type
 name type

 name
 base

 value
 value

Figure VII-12. Conversion from Intermediate Object Representation to XML Document
Representation

Converting from an intermediate to a destination model of a real-world entity

involves four steps. First, if the translator receives the intermediate model in the form of

an XML instance document, then it converts this document to its equivalent object

representation. Second, the translator must resolve differences in view between the

intermediate and destination models. Third, the translator must resolve differences in

view representation between intermediate and destination models. Fourth, the destination
 222

model must be converted from an object representation to an equivalent XML instance

document representation for forwarding to the destination system application.

<?xml version="1.0" encoding="UTF-8"?>
<

="http://nps.navy.mil/cs/oomi/fiomA/groundCombatVehicle_View1"
="http://www.w3.org/2001/XMLSchema-instance"

="http://nps.navy.mil/cs/oomi/fiomA
 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicle_View1.xsd">
 < >battleTank</ >
 < >
 < >
 < >392451</ >
 < >N</ >
 </ >
 < >
 < >0814413</ >
 < >W</ >
 </ >
 </ >
 < >
 < >16</ >
 < >22</ >
 < >41</ >
 < >Z</ >
 </ >
 < >720</ >
</ >

groundCombatVehicle_View1

type type
position

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
position

time
stdDay stdDay
stdHourTime stdHourTime
stdMinuteTime stdMinuteTime
stdTimeZone stdTimeZone

time
range range

groundCombatVehicle_View1

xmlns
xmlns:xsi
xsi:schemaLocation

Figure VII-13. Intermediate XML Instance Document
“groundCombatVehicle_View1.xml”

a. Converting From XML Document Representation back to

Intermediate Object Representation
Converting a received XML instance document representation back to its

corresponding intermediate object representation reverses the process executed in

Section VII.C.1.c. This would be necessary for a translator architecture where an XML

instance document is used to transport information between a source and destination

system. As seen in Figure VII-12, the received intermediate XML document is an

instance of the XML Schema used to generate the FCR Schema defining the standard

representation of the Federation Entity View. Converting the received XML instance

document back to its equivalent object representation is done using an unmarshal method

contained in the FCR Schema. The unmarshal method functions as the inverse of the

marshal method previously discussed in Section VII.C.1.c. Both marshal and unmarshal

methods are generated from an XML Schema during data binding. Figure VII-14

 223

illustrates the process for converting the received intermediate XML instance document

to its equivalent intermediate FCR Schema object and the relationship between the XML

instance document’s governing XML Schema and the FCR Schema object’s defining

FCR Schema.

<<becomes>>

(unmarshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

Figure VII-14. Process for Converting XML Instance Document to its Equivalent FCR

Schema Object

The first thing the destination translator must do upon receipt of the

intermediate XML instance document is to determine which unmarshal method to use to

effect the conversion. This is accomplished in the same manner as was described in

Section VII.C.1.a for converting an exported XML instance document to its

corresponding object representation. As mentioned there, the OOMI IDE and translator

use the XML namespace URI included with the intermediate XML instance document to

locate the FCR and included FCR Schema instance containing the required unmarshal

method. For the example “groundCombatVehicle_View1.xml” intermediate XML

instance document seen in Figure VII-13, the “http://nps.navy.mil/cs/oomi/-

FCR/groundCombatVehicle_View1” namespace URI is used to locate the GroundCombat-

Vehicle_View1 FCR Schema containing the required unmarshal method.

Upon receipt of the XML instance document from the source model

translator, the destination model translator determines the proper FCR Schema and

invokes its unmarshal method to convert the document to its equivalent object

representation. Figure VII-15 shows the groundCombatVehicle_View1 FCR Schema

 224

object that results from applying the GroundCombatVehicle_View1 FCR Schema

unmarshal method to the received “groundCombatVehicle_View1.xml” XML instance

document representation.

<<becomes>>

(unmarshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

<< Intermediate XML Document>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema -instance"
="http://nps.navy.mil/cs/oomi/fiomA

 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicleView1.xsd ">
 < >battleTank</ >
 < >
 < >
 < >392451</ >
 < >N</ >
 </ >
 < >
 < >0814413</ >
 < >W</ >
 </ >
 </ >
 < >
 < >16</ >
 < >22</ >
 < >41</ >
 < >Z</ >
 </ >
 < >720</ >
</ >

<< Intermediate XML Schema>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/fiomA "

="http://www.w3.org/2001/XMLSchema ="http://nps.navy.mil/cs/oomi/fiomA "
="qualified ="unqualified">

 < ="groundCombatVehicleView1 ">
 < >
 < >
 < >This sample schema provided for example in Figure III -3.
 groundCombatVehicleView1 provides same perspective of ground combat vehicle
 real-world entity as System B mechanizedCombatVehicle model. </ >
 </ >
 < >
 < ="type ="fiomA:vehicleType ="0"/>
 < ="fiomA:position ="0"/>
 < ="fiomA:time ="0"/>
 < ="range ="fiomA:distanceInNmType ="0"/>
 </ >
 </ >
 </ >
 < ="vehicleType">
 < ="xsd:string">
 < ="5"/>
 < ="16"/>
 < ="battleTank"/>
 < ="rocketLauncher"/>
 < ="truck"/>
 < ="personnelCarrier "/>
 < ="reconVehicle"/>
 < ="unknown"/>
 </ >
 </ >
 < ="position">
 < >
 < >
 < />
 </ >
 < >
 < ="latitude" ="fiomA:latitudeType "/>
 < ="longitude ="fiomA:longitudeType "/>
 </ >
 </ >
 </ >
 < ="time">
 < >
 < >
 < >The day of a month and timekeeping in hours and minutes of a calendar day,
using the 24-hour clock system and an associated time zone. </ >
 </ >
 < >
 < ="stdDay ="fiomA:stdDayType "/>
 < ="stdHourTime ="fiomA:stdHourTimeType "/>
 < ="stdMinuteTime " ="fiomA:stdMinuteTimeType "/>
 < ="stdTimeZone ="fiomA:stdTimeZoneType "/>
 </ >
 </ >
 </ >
 < ="distanceInNmType">
 < ="xsd:integer">
 < ="0"/>
 < ="1000"/>
 </ >
 </ >

 .
 .

groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type =battleTtank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

GroundCombatVehicle_View1_FCR_Schema

type : VehicleType
position : Position
time : Time
range : DistanceInNmType

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema>>

groundCombatVehicleView1

type type
position

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
position

time
stdDay stdDay
stdHourTime stdHourTime
stdMinuteTime stdMinuteTime
stdTimeZone stdTimeZone

time
range range

groundCombatVehicleView1

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation

xsd:sequence
xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation

xsd:sequence
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:documentation

xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minInclusive
xsd:maxInclusive

xsd:restriction
xsd:simpleType

 xmlns "
xmlns:xsi
xsi:schemaLocation

 targetNamespace
xmlns:xsd " xmlns:fiomA
elementFormDefault " attributeFormDefault

 name

 name " type " minOccurs
 ref " minOccurs
 ref " minOccurs
 name " type " minOccurs

 name
 base

 value
 value

 value
 value
 value
 value
 value
 value

 name

 name type
 name " type

 name

 name " type
 name " type
 name type
 name " type

 name
 base

 value
 value

Figure VII-15. Conversion from XML Instance Document Representation back to
Intermediate Object Representation

 225

b. Resolving Differences in View between Received Intermediate
Model and Destination Model of Real-World Entity

From the received intermediate FCR Schema object, the translator

identifies the FCR Schema Inheritance Hierarchy containing the object’s defining FCR

Schema. This FCR Schema Inheritance Hierarchy is used to resolve differences in view

between the received intermediate model and the destination model of the exported real-

world entity. Differences in view are resolved by locating the destination system model

of the real-world entity modeled by the received FCR Schema object and determining

whether substitution of this received FCR Schema object would be behaviorally

indistinguishable to destination applications expecting the destination system model of

the entity. The substitution would be behaviorally indistinguishable to destination

applications if all the mandatory attributes and operations expected for an object of the

destination CCR Schema were contained in the received FCR Schema object and

differences in representation of those properties could be resolved. The destination

translator examines the FCR Schema Inheritance Hierarchy as well as the FCR Schema

Inheritance Hierarchies of any supertype FEs to determine if such an FEV containing a

CCR for the destination system exists. If so, the destination translator uses the

information contained in the received FCR Schema object to create a new FCR Schema

object whose attribute and operation sets correspond to those of the destination system’s

CCR Schema. The methodology for making that determination is described as follows.

The destination translator searches the FCR Schema Inheritance Hierarchy

containing the received intermediate object’s defining FCR Schema for an FEV

containing a CCR for the destination system. If such a CCR is found, the destination

CCR Schema is examined to determine if all mandatory properties (attributes and

operations) contained in the CCR Schema have a corresponding property in the received

intermediate object’s defining FCR Schema. Determination of whether a property is

mandatory is made by examining the minOccurs attribute of each property. This CCR

Schema attribute is automatically set from the corresponding attribute contained in the

XML Schema used for CCR Schema creation. A value for minOccurs of zero indicates

the property is optional; otherwise it is regarded as mandatory.

 226

If all of the mandatory properties contained in the destination CCR

Schema do not have a corresponding property in the received FCR Schema object or if

the FCR Schema Inheritance Hierarchy does not contain an FEV with CCR defined for

the destination system, then the FIOM is searched to determine if a supertype of the FE

containing the received FCR Schema object exists. If so, the translator searches the FCR

Schema Inheritance Hierarchy of the supertype FE for an FEV containing a CCR for the

destination system as previously described. If found, the destination system CCR

Schema is examined to determine if all mandatory attributes and operations contained in

the CCR Schema have a corresponding property in the received FCR Schema object.

Then, if all mandatory properties contained in the CCR Schema have a corresponding

property in the received FCR Schema object, a new FCR Schema object is created whose

view corresponds to the destination system CCR Schema. If not, the process continues

with the supertype of the FE currently being checked, until the FIOM root is reached.

If no FE is found with an FEV containing a CCR for the

destination system such that all mandatory attributes and operations contained in the CCR

Schema have a corresponding property in the received intermediate object’s defining

FCR Schema, then a translation failure is logged for interoperability engineer

notification. The interoperability engineer may use logged translation failures to drive

the requirements for future component system modification if the system federation

requires the failed information or operation exchange.

From our continuing example, Figure VII-16 depicts an excerpt

from the FCR Schema Inheritance Hierarchy for the ground combat vehicle real-world

entity introduced in Figure IV-3. In our example, System B is exporting an XML

document representation of an instance of its model of the ground combat vehicle real-

world entity for import to System D, as captured in the file “mechanizedCombat-

Vehicle.xml” seen in Figure VII-6. As seen in Sections VII.C.1.a and VII.C.1.b, the

source System B translator has already converted the exported XML instance document

to its equivalent object representation, and translated the component system object

representation to an equivalent intermediate object representation. The next step in the

process is for the destination model translator to translate this intermediate ground-

 227

CombatVehicle_View1 object to a behaviorally equivalent intermediate model object

representation. In order to accomplish this step the translator uses the FCR Schema

Inheritance Hierarchy containing the received groundCombatVehicle_View1 object’s

defining FCR Schema.

groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : DistanceInNmType

getRange()
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR
groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : VehicleType
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View3_FCR

armoredFightingVehicle_CCR

groundCombatVehicle_View3

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

<<CCR Schema>>

1

1 ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassificationType
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatusType

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

mechanizedCombatVehicle_CCR

<<CCR Schema>>
1

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: DistanceInKmType

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

System B System D

Figure VII-16. Example FCR Schema Inheritance Hierarchy Excerpt

From the Figure VII-16 FCR Schema Inheritance Hierarchy it can

be seen that the GroundCombatVehicle_View3 FEV contains a CCR for the System D

destination, ArmoredFightingVehicle CCR. Further investigation of the Armored-

FightingVehicle CCR Schema shown in Figure VII-20 reveals that all of the mandatory

attributes contained in the CCR Schema, afvClassification, afvLocation, and afvObsTime,

have a corresponding property in the received object’s defining GroundCombat-

Vehicle_View1 FCR Schema, attributes type, position, and time, respectively. Therefore,

 228

the destination translator uses the information contained in the received GroundCombat-

Vehicle_View1 FCR Schema instance to create an instance of the GroundCombat-

Vehicle_View3 FCR Schema corresponding to the destination ArmoredFightingVehicle

CCR Schema. Associations between the CCR Schema and its corresponding FCR

Schema attributes and operations established during FCR-CCR Translation class creation

discussed in Section V.D.2.c are used in determining whether a CCR Schema’s

mandatory properties are satisfied by a received FCR Schema object.

c. Translation From Intermediate Object Representation to
Destination Object Representation

Translation from the intermediate object representation to the destination

model object representation is accomplished through the use of the translate method

defined for the FCR-CCR Translation class associated with the destination CCR Schema

determined by the translator as discussed in Section VII.C.2.b. The translate method

defined for the selected FCR-CCR Translation class is applied to the FCR Schema object

corresponding to the destination CCR Schema created from the received FCR Schema

object as discussed in Section VII.C.2.b. Figure VII-17 depicts application of the FCR-

CCR Translation class translate method to this new class, converting it from an

intermediate object representation to the destination model object representation.

<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

FCR Schema Object

Figure VII-17. FCR Schema Object to CCR Schema Object Translation

 229

From our continuing example, the GroundCombat-

Vehicle_View3__ArmoredFightingVehicle Translation class associated with the

destination ArmoredFightingVehicle CCR Schema, would be used to convert the

GroundCombatVehicle_View3 FCR Schema object created from the received Ground-

CombatVehicle_View1 FCR Schema object to its behaviorally equivalent destination

object representation. Figure VII-18 illustrates application of this class’s
translate(groundCombatVehicle_View3 : GroundCombatVehicle_View3) : ArmoredFightingVehicle
method on the received GroundCombatVehicle_View3 FCR Schema instance to produce

an instance of the ArmoredFightingVehicle CCR Schema.

<<becomes>>

(translation)

GroundCombatVehicle_View3__ArmoredFightingVehicle

translate(groundCombatVehicle_View3: GroundCombatVehicle_View3) : ArmoredFightingVehicle

groundCombatVehicle_View3_FCR_Schema:
GroundCombatVehicle_View3_FCR_Schema
type = battleTank
position = 392451N 0814413W
time = 162241Z
status = null

getType
getPosition()
getTime()
getStatus()
setType()
setPostion()
setTime()
setStatus()
marshal()
unmarshal()

<<FCR Schema Object>>
armoredFightingVehicle_CCR_Schema:
ArmoredFightingVehicle_CCR_Schema

afvClassification = battleTank
afvLocation = 392451N 0814413W
afvObsTime =162241Z
afvStatus = null

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema Object>>

<<FCR-CCR Translation>>

Figure VII-18. Translating from Intermediate to Destination Object Representation

d. Converting From Destination Object Representation to

Destination XML Document Representation
The last step in converting from an intermediate to a destination model of

a real-world entity involves the conversion from an object representation of the

destination model of the received real-world entity to an XML document representation.

Conversion from a destination object representation to an XML instance document

representation of the exported information is accomplished by use of the marshal method

generated with the CCR Schema defining the destination object representation. The

destination translator uses this CCR Schema object’s marshal method to convert the

object representation to its equivalent XML instance document representation. Figure

VII-19 illustrates the process for converting the CCR Schema object to its equivalent
 230

XML instance document representation and the relationship between the CCR Schema

object’s defining CCR Schema and the XML instance document’s governing XML

Schema.

<<becomes>>

(marshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Destination XML Schema

Destination XML Document

Figure VII-19. Process for Converting CCR Schema Object to its Equivalent XML

Instance Document

From our continuing example, Figure VII-20 depicts the destination XML

Schema used to generate the selected ArmoredFightingVehicle CCR Schema. The

destination model translator uses the marshal method from this class to convert the

destination CCR Schema instance to an equivalent destination XML instance document.

This destination XML instance document is then forwarded to the destination system

application for action. Figure VII-21 illustrates the conversion from an object

representation of our ArmoredFightingVehicle object to its equivalent XML instance

document representation, the contents of which are displayed in Figure VII-22.

D. TRANSLATOR SUMMARY
The purpose of the translator presented in this chapter is to resolve heterogeneities

in state and behavioral information shared among systems in order to enable their

interoperation. These heterogeneities can be categorized as either a difference in view or

differences in representation of a view of the real-world entities whose state and behavior

are shared among systems. Under the Object-Oriented Method for Interoperability

(OOMI), an interoperability engineer captures these differences in

 231

<?xml version="1.0" encoding="UTF-8"?>
< ="http://nps.navy.mil/cs/oomi/systemD"

="http://nps.navy.mil/cs/oomi/systemD/armoredFightingVehicle"
="http://www.w3.org/2001/XMLSchema" ="qualified"

="unqualified">
 < ="armoredFightingVehicle">
 < >
 < >
 < >An armoredFightingVehicle msgtype provides System D model of ground
 combat vehicle real-world entity for the example in Figure III-3.</ >
 </ >
 < >
 < ="afvClassification" ="systemD:afvClassificationType"/>
 < ="systemD:afvLocation"/>
 < ="systemD:afvObsTime"/>
 < ="afvStatus" ="systemD:afvStatusType" ="0"/>
 </ >
 </ >
 </ >
 < ="afvClassificationType">
 < ="xsd:string">
 < ="5"/>
 < ="14"/>
 < ="battleTank"/>
 < ="rocketLauncher"/>
 < ="truck"/>
 < ="unknown"/>
 </ >
 </ >
 < ="afvLocation">
 < >
 < >
 < />
 </ >
 < >
 < ="latitude" ="systemD:latitudeType"/>
 < ="longitude" ="systemD:longitudeType"/>
 </ >
 </ >
 </ >
 < ="afvObsTime">
 < >
 < >
 < >The day of a month and timekeeping in hours and minutes of a
 calendar day, using the 24-hour clock system referenced to Greenwich Mean Time
 (GMT).</ >
 </ >
 < >
 < ="day" ="systemD:dayType"/>
 < ="hourTime" ="systemD:hourTimeType"/>
 < ="minuteTime" ="systemD:minuteTimeType"/>
 < ="stdTimeZone" ="systemD:stdTimeZoneType"/>
 </ >
 </ >
 </ >
 < ="afvStatusType">
 < ="xsd:string">
 < ="7"/>
 < ="11"/>
 < ="operational"/>
 < ="damaged"/>
 < ="destroyed"/>
 </ >
 </ >

 .
 .
 .
</ >

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType

xsd:schema

 targetNamespace
xmlns:systemD
xmlns:xsd elementFormDefault
attributeFormDefault

 name

 name type
 ref
 ref
 name type minOccurs

 name
 base

 value
 value

 value
 value
 value
 value

 name

 name type
 name type

 name

 name type
 name type
 name type
 name type

 name
 base

 value
 value

 value
 value
 value

Figure VII-20. Destination XML Schema "armoredFightingVehicle.xsd"

 232

<<becomes>>

(marshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

armoredFightingVehicle_CCR_Schema:
ArmoredFightingVehicle_CCR_Schema

afvClassification = battleTank
afvLocation = 392451N 0814413W
afvObsTime =162241Z
afvStatus = null

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema Object>>

ArmoredFightingVehicle_CCR_Schema

afvClassification : AfvClassificationType
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatusType

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema>>

<< Destination XML Schema>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/systemD

="http://nps.navy.mil/cs/oomi/systemD ="http://www.w3.org/2001/XMLSchema"
="qualified ="unqualified">

 < ="armoredFightingVehicle">
 < >
 < >
 < >An armoredFightingVehicle msgtype provides System D model of ground
 combat vehicle real-world entity for the example in Figure III -3.</ >
 </ >
 < >
 < ="afvClassification ="systemD:afvClassificationType "/>
 < ="systemD:afvLocation"/>
 < ="systemD:afvObsTime"/>
 < ="afvStatus ="systemD:afvStatusType ="0"/>
 </ >
 </ >
 </ >
 < ="afvClassificationType">
 < ="xsd:string">
 < ="5"/>
 < ="14"/>
 < ="battleTank"/>
 < ="rocketLauncher"/>
 < ="truck"/>
 < ="unknown"/>
 </ >
 </ >
 < ="afvLocation">
 < >
 < >
 < />
 </ >
 < >
 < ="latitude ="systemD:latitudeType"/>
 < ="longitude ="systemD:longitudeType"/>
 </ >
 </ >
 </ >
 < ="afvObsTime">
 < >
 < >
 < >The day of a month and timekeeping in hours and minutes of a
 calendar day, using the 24-hour clock system referenced to Greenwich Mean Time
 (GMT).</ >
 </ >
 < >
 < ="day ="systemD:dayType"/>
 < ="hourTime ="systemD:hourTimeType"/>
 < ="minuteTime ="systemD:minuteTimeType"/>
 < ="stdTimeZone ="systemD:stdTimeZoneType"/>
 </ >
 </ >
 </ >
 < ="afvStatusType">
 < ="xsd:string">
 < ="7"/>
 < ="11"/>
 < ="operational"/>
 < ="damaged"/>
 < ="destroyed"/>
 </ >
 </ >

 .
 .
 .
</ >

<< Destination XML Document>>
<?xml version="1.0" encoding="UTF -8"?>
< ="http://nps.navy.mil/cs/oomi/systemD

="http://www.w3.org/2001/XMLSchema-instance
="http://nps.navy.mil/cs/oomi/systemD

C:\Translator\OOMI\projects\testapps\armoredFightingVehicle.xsd">
 < >battleTank</ >
 < >
 < >
 < >392451</ >
 < >N</ >
 </ >
 < >
 < >0814413</ >
 < >W</ >
 </ >
 </ >
 < >
 < >16</ >
 < >22</ >
 < >41</ >
 < >Z</ >
 </ >
 < >operational</ >
</ >

xsd:schema

xsd:element
xsd:complexType

xsd:annotation
xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:element

xsd:complexType
xsd:annotation

xsd:documentation

xsd:documentation
xsd:annotation
xsd:sequence

xsd:element
xsd:element
xsd:element
xsd:element

xsd:sequence
xsd:complexType

xsd:element
xsd:simpleType

xsd:restriction
xsd:minLength
xsd:maxLength
xsd:enumeration
xsd:enumeration
xsd:enumeration

xsd:restriction
xsd:simpleType

xsd:schema

armoredFightingVehicle

afvClassification afvClassification
afvLocation

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
afvLocation

afvObsTime
day day
hourTime hourTime
minuteTime minuteTime
stdTimeZone stdTimeZone

afvObsTime
afvStatus afvStatus

armoredFightingVehicle

 targetNamespace "
xmlns:systemD " xmlns:xsd
elementFormDefault " attributeFormDefault

 name

 name " type
 ref
 ref
 name " type " minOccurs

 name
 base

 value
 value

 value
 value
 value
 value

 name

 name " type
 name " type

 name

 name " type
 name " type
 name " type
 name " type

 name
 base

 value
 value

 value
 value
 value

 xmlns "
xmlns:xsi "
xsi:schemaLocation

Figure VII-21. Conversion From Destination Object Representation to Destination XML
Instance Document Representation

view and representation in a Federation Interoperability Object Model (FIOM) created

for a specified federation of systems prior to runtime. Then at runtime, information

contained in the FIOM is used to resolve system modeling differences.

Differences in view are resolved through exploitation of the commonalities

among systems of different views of the same real-world entity. Differences in view

 233

representation are resolved by use of translations defined by the interoperability engineer

prior to runtime and stored in the FIOM for each component system model of the real-

world entity. In order to minimize the number of required translations, the OOMI

translator uses a two-step process, involving the use of an intermediate model for each

real-world entity involved in system interoperation. In the first step the source model of a

real-world entity is translated to an equivalent intermediate model of that entity. In the

second step, the intermediate model of the real-world entity is translated to a behaviorally

equivalent model suitable for use by the destination system.

<?xml version="1.0" encoding="UTF-8"?>
< ="http://nps.navy.mil/cs/oomi/systemD"

="http://www.w3.org/2001/XMLSchema-instance"
="http://nps.navy.mil/cs/oomi/systemD

C:\Translator\OOMI\projects\testapps\armoredFightingVehicle.xsd">
 < >battleTank</ >
 < >
 < >
 < >392451</ >
 < >N</ >
 </ >
 < >
 < >0814413</ >
 < >W</ >
 </ >
 </ >
 < >
 < >16</ >
 < >22</ >
 < >41</ >
 < >Z</ >
 </ >
 < >operational</ >
</ >

armoredFightingVehicle

afvClassification afvClassification
afvLocation

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
afvLocation

afvObsTime
day day
hourTime hourTime
minuteTime minuteTime
stdTimeZone stdTimeZone

afvObsTime
afvStatus afvStatus

armoredFightingVehicle

 xmlns
xmlns:xsi
xsi:schemaLocation

Figure VII-22. Destination XML Instance Document "armoredFightingVehicle.xml"

Source to intermediate model translation first involves conversion of the

information exported by a source system from an XML instance document representation

to an object representation of that information, captured in the OOMI as a Component

Class Representation (CCR) Schema object. The next step involves conversion from the

source object representation to the corresponding intermediate object representation,

depicted as a Federation Class Representation (FCR) Schema object under the OOMI.

The final optional step entails converting the intermediate object representation to an

intermediate XML instance document representation if the federation architecture uses

 234

XML for transferring information among systems. Figure VII-23 illustrates the source to

intermediate model translation process implemented by the OOMI translator.

<<becomes>>

(unmarshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>> <<instance of>>

Source XML Schema

Source XML Document
<<becomes>>

(translate)

FCR-CCR Translation Class

FCR Schema Object
<<becomes>>

(marshal)

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

Figure VII-23. Source to Intermediate Model Translation

Translation from an intermediate to a destination model of a real-world entity

defining an interoperation requires resolution of potential differences in view as well as

possible differences in representation between intermediate and destination models.

Unless the source and destination systems have the same view of the real-world entity

being modeled, the intermediate model will have a different view of the modeled real-

world entity than the destination system. Intermediate to destination model translation

therefore first requires resolution of the differences in view between the intermediate and

destination models and then resolution of differences in view representation.

Converting from an intermediate to a destination model of a real-world entity

involves four steps. First, if the translator receives the intermediate model in the form of

an XML instance document, then it must first convert the received XML instance

document to its equivalent object representation, captured as an FCR Schema object in

the OOMI. Second, the translator must resolve differences in view between the

intermediate and destination models. Third, the translator must resolve differences in

representation for a specified view, producing a CCR Schema object reflective of the

destination model of the real-world entity. Fourth, the destination model must be

converted from an object representation to an equivalent XML instance document

representation for forwarding to the destination system application. Figure VII-24

depicts the intermediate to destination model translation process of the OOMI translator.

The OOMI translator presented in this chapter offers an improvement in the

methodology used by systems in Chapter II representing the current state of the practice

 235

toward achieving system interoperability. This improvement is provided in three areas.

First, the OOMI translation methodology utilizes a two-step process that requires the

definition of a maximum of 2n translations to resolve representational differences among

a federation of n systems. This is a reduction from the n(n-1) translations required using

point-to-point system interfaces when the number of involved systems exceeds three.

Second, the runtime translation process is fully automated requiring no operator

intervention once an FIOM is constructed for a specified system federation. Third, the

OOMI translator provides the capability to log translation failures for input to the

requirements process for future component system modification.

<<becomes>>

(unmarshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document
<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

<<becomes>>

(marshal)

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Destination XML Schema

Destination XML Document

Figure VII-24. Intermediate to Destination Model Translation

The OOMI translator prototype implemented by [Lee02] demonstrates the use of

a two-step translation process in automating the conversion between models of

information shared among systems in a sample federation. The capability for translation

failure logging is not provided in the initial prototype, but is planned for future

implementations.

 236

VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE
RESEARCH

A. REVIEW OF CRITERIA USED FOR EVALUATING
INTEROPERABILITY APPROACHES AND LIMITATIONS SEEN IN
CURRENT SYSTEMS
In Chapter II eight criteria for evaluating approaches for achieving

interoperability among heterogeneous systems were identified. Those criteria are listed

below and explained in Section II.B. The eight criteria used are:

• Types of heterogeneity addressed
• Capability for application of computer aid for model correlation
• Required knowledge of remote operations
• Required modification to existing system
• Translation methodology used
• Capability for application of computer aid for translation development
• Support for Federation Extensibility
• Information exchange versus joint task execution

Six of the most pertinent existing approaches for achieving interoperability among

heterogeneous systems were evaluated against these criteria. From that evaluation, the

following limitations were seen in some or all of the existing approaches.

• None of the systems evaluated provide a means for resolving the complete
spectrum of modeling differences found among heterogeneous systems.

• Only one of the existing approaches provide assistance in determining when
different system models refer to the same entity from the problem domain.

• All of the current approaches require a requesting system to conform to a
provider’s model of requested state or behavior information, requiring
modification to the requestor if not already conformant.

• Most of the evaluated approaches utilize a point-to-point conversion process for
resolving modeling differences among systems vice a two-step process using an
intermediate model, resulting in a greater number of translations to be defined
when the number of systems to be integrated exceeds three.

• Most of the approaches provide little or no support to the development of the
translations required to resolve modeling differences among systems.

• Most approaches are concerned only with the resolution of modeling differences
for information exchanged among systems and do not provide the capability for
resolving possible differences in the signatures used to access the behavior of
corresponding methods on different systems.

 237

In response to these limitations and in answer to the research question raised in

Section I.C, the Object-Oriented Method for Interoperability (OOMI) introduced in

Chapter IV was developed to provide a means for resolving the differences in data

models among heterogeneous systems that have hampered the quest for system

interoperability. An evaluation of the OOMI’s success in this endeavor is provided next.

B. EVALUATION OF OBJECT-ORIENTED METHOD FOR INTEROPER-
ABILITY AGAINST INTEROPERABILITY COMPARISON CRITERIA
In this section the OOMI is evaluated against the Section II.B criteria used for

comparing interoperability approaches. As part of the discussion, a look at how the

OOMI addresses the limitations seen in the previous interoperability approaches is

provided. The results of that evaluation are summarized in Table VIII-1 and discussed in

the following paragraphs.

1. Types of Heterogeneity Addressed
The OOMI provides the interoperability engineer with the means for addressing

each of the types of heterogeneity defined in Section II.A.2. Under the OOMI, a

Federation Entity (FE) is defined for each real-world entity whose state and behavior are

shared among systems in a federation. As described in Section IV.C.1.b(1), for each FE

one or more Federation Entity Views (FEVs) are used to distinguish differences in what

real-world-entity characteristics are modeled by different systems due to heterogeneities

in scope, level of abstraction, or temporal validity. These differences are captured by

variations in the number and composition of the attributes and operations used for

modeling the same real-world entity on different systems. Commonalities in the

attributes and operations used to define an FEV are used to construct an inheritance

hierarchy for the FEV relating the models that can be used to determine when the

information contained in one system’s view of an entity is suitable for use by another.

In addition to differences in what characteristics are chosen to model a real-world

entity, there may be variations in how these characteristics are represented on different

component systems. These variations may be due to heterogeneities of hardware and

operating systems, organizational models, structure, presentation, and meaning found on

the different systems. In order to capture these differences, the OOMI provides two

mechanisms to denote the possible alternative representations of an entity’s view. The

 238

first mechanism, the Federation Class Representation (FCR), is used to reflect the

“standard” (as defined by the interoperability engineer) representation used by the

federation for an entity’s view. The second mechanism, the Component Class

Representation (CCR), is used to capture a component system’s representation of an

FEV.

Table VIII-1. Evaluation of OOMI Support for Resolution of Modeling Differences

Evaluation Criteria OOMI
Types of Heterogeneity

Addressed
Hardware and Operating System;
Organizational Models;
Structure;
Presentation;
Meaning;
Scope;
Level of Abstraction;
Temporal Validity;

Capability for Application
of Computer-Aid for
Model Correlation?

Yes. Syntactic and Semantic correlation algorithm.

Knowledge of Remote
System Methods Required?

No. Correlation algorithm will assist Interoperability
Engineer in finding remote system method
corresponding to local (client) invocation.

Modification to Existing
System Required?

No. Translator implemented as middleware or using
wrapper-based approach.

Translation Methodology? Two-step using intermediate representation.
Capability for Application

of Computer-Aid for
Translation Development?

Computer-aided generation of translation skeleton;
library maintained for functional transformation
reuse.

Support for Federation
Extensibility

Partial support. Additions or changes to existing FCR
Schema attribute and operation representations
may affect existing translations used to resolve
representational differences between CCR and
FCR Schemas.

Information Exchange vs.
Joint Task Execution

Both information exchange and joint task execution.

 239

Differences between component representations are resolved by means of a two-

step translation process whereby a source CCR is first converted to its equivalent FCR

and then to the corresponding destination CCR. Translations are defined for each FEV to

enable conversion between each CCR and the corresponding FCR. Section IV.C.1.b(3)

details the means for resolving FEV representation differences.

As described in Chapter VII, the OOMI translator uses information from the

FEV’s FCR Schema Inheritance Hierarchy and FCR-CCR Translations to resolve

heterogeneities among federation systems. The translator uses the FEV’s FCR Schema

Inheritance Hierarchy to resolve differences in view among systems, as caused by

heterogeneities of scope, level of abstraction, and temporal validity. The translator uses

an FCR-CCR Translation associated with each component representation of a view

(CCR) to resolve heterogeneities of hardware and operating systems, organizational

models, structure, presentation, and meaning.

2. Capability for Application of Computer Aid for Model Correlation
During construction of a Federation Interoperability Object Model (FIOM) for a

specified federation of systems, correspondences between information and operations

exported from or imported to the component systems must be identified in order to enable

system interoperability. The OOMI Integrated Development Environment (IDE)

provides computer-aid for identifying these correspondences.

As described in Section VI.B, the correlation methodology implemented for the

OOMI IDE is used to assist the interoperability engineer in adding a CCR to the FIOM

during the Register CCR phase of IDE operation. Assistance is provided to the

interoperability engineer in terms of computer aid for finding the FE corresponding to the

same real-world entity modeled by the CCR being registered. The OOMI IDE

correlation methodology uses a two-phased approach for establishing this

correspondence.

 240

In the first phase, semantic information in the form of keywords taken from

descriptions of the component and federation models of the real-world entity is used to

establish the correspondence. In the second phase, details about the structure and

composition of the attributes and operations used for the component and federation

models of a real-world entity are used to correlate the models. Potential correspondence

between a CCR and an FCR is given in terms of a score for both the semantic and

syntactic phases of the correlation effort. Comparison of scores among potential FCR

matches will direct the interoperability engineer toward the most likely match for a CCR.

However, final determination of CCR-FCR correlation requires a one-to-one

correspondence between the attribute and operation sets of a potential CCR-FCR match

as discussed in Section V.C.3.b. This determination is the responsibility of the

interoperability engineer and is not automated in the OOMI IDE.

3. Required Knowledge of Remote Operations
Under the OOMI, definition of an intermediate model of the real-world entities

involved in the interoperation between systems as described in Section IV.C.1.b(2) and

the use of the two-step translation methodology described in Section VII.C mean that one

system does not have to prior knowledge of another in order to exchange information or

execute the other’s tasks.

For information exchange the source system provides the exported information in

the form of a set of attributes or objects of a producer class in the native format of the

producer. The exported information is first converted into a corresponding intermediate

model by an OOMI source model translator using a source-to-intermediate model

translation captured as part of the FIOM during federation design. Then, in a second

step, executed by a corresponding OOMI destination model translator, the intermediate

model of the exported information is converted into the destination consumer system

model. Neither the source nor destination systems require any knowledge of the

information model used by the other system. Each is concerned only with the conversion

between component and intermediate models using translations defined during federation

design.

 241

For joint task execution, a client system provides an operation name and a set of

parameter values for a desired operation in the native format of the client. The

parameters may be attributes, operations, or objects of a client class. The OOMI source

model translator first converts the operation name and parameter values into a

corresponding intermediate model using a source-to-intermediate model translation

captured in the FIOM. Then, the OOMI destination model translator for a system

containing an implementation of a behaviorally equivalent operation converts the

intermediate model of the operation name and parameter values to the corresponding

model recognized by the destination server system. Again, neither the source nor

destination systems require any knowledge of the information model used by the other

system.

The information required to effect these translations is captured as part of the

FIOM during federation design. Correlation software is used to help an interoperability

engineer locate other component systems containing a model of the same real-world

entities exported or imported by a particular system. This information is used in

constructing a federation model of the real-world entities involved in the system

interoperation (the FIOM). Then, at run-time, an OOMI translator accesses the

information contained in the FIOM to resolve differences in view of the component

system models and to effect the translation between component and standard

representations of a view.

4. Required Modification to Existing System
The use of an intermediate model of the real-world entities involved in the

interoperation between systems and the use of the two-step translation methodology

described in Section VIII.B.3, together with a wrapper or middleware based

implementation of the OOMI translator, eliminates the requirement for existing system

modification in order to resolve heterogeneities among system models.

 242

In a wrapper-based approach, the translator is implemented as a software

intermediary that logically envelops a component system. The wrapper functions to

intercept incoming and outgoing information from the wrapped system and convert it

between component and intermediate models. In a system federation where the translator

is implemented as part of middleware in a hub-and-spoke architecture, the translator

serves the same function as in the wrapper-based approach. The primary difference

between the architectures lies in the number of translators required and in the location of

the translator(s). In a hub-and-spoke architecture a single source and destination model

translator is typically implemented on a separate platform between the source and

destination systems. In a wrapper-based architecture, separate translators are required for

each system in the federation and will commonly reside on the same hardware platform

as the component system.

As a result of the two-step translation methodology, no modifications to the

component systems are required to resolve differences among system models. The

translator accomplishes any translations required between models. Modifications to the

component systems are required only if a change to the external interface is required to

expose information or operations available internally in a component system or to take

advantage of information or operations exposed by other systems.

5. Translation Methodology
As pointed out in Section VII.C the OOMI translator uses a two-step process,

involving the use of an intermediate representation, to reduce the number of required

translations. In the first step, an object conforming to the source model of a real-world

entity, captured as a CCR instance, is translated to an equivalent object conforming to the

intermediate model of that entity in the form of an FCR instance. In the second step, the

intermediate model object of the real-world entity is translated to a behaviorally

equivalent model suitable for use by the destination system. This pair-wise approach to

resolving representational differences between systems reduces the number of required

translations from n(n-1) to 2(n) for a federation of n systems.

6. Capability for Application of Computer Aid for Translation
Development

As discussed in Section V.D.2.c, given corresponding federation and component

models of a real-world entity whose information and operations are shared among

systems, the OOMI IDE assists the interoperability engineer with defining the

translations required to resolve representational differences between the models. The

OOMI IDE provides computer aid to the interoperability engineer for defining a

translation in two areas. The first area involves exploiting user-identified

correspondences between component and federation models to provide a framework for

translation definition. The second area involves creation and maintenance of a library of

pre-defined translation definitions for insertion into this translation framework.

7. Support for Federation Extensibility
Use of object-oriented design principles in the development of the FIOM supports

creation of a model for achieving interoperability among heterogeneous systems that is

extensible. When adding a new component system to the federation, an evaluation is

 243

made to determine if the real-world entities modeled by the component system are

already represented in the FIOM. If not, a new federation entity, complete with views

and representations of those views, is added to the federation to which the component

model of the entity will be included. If such an FE already exists in the FIOM, then a

determination is made as to whether there exists a view in the FE’s FCR Schema

Inheritance Hierarchy whose FCR Schema exhibits a one-to-one correspondence with the

attribute and operation set of the component system model of the real-world entity. If so,

the system designer simply adds a new CCR reflecting the component system model of

the entity to the appropriate view. If such a view does not exist, a new FEV is added for

that entity to which the CCR will be included, and relationships established between the

new FEV and existing views in the entity’s inheritance hierarchy. Addition of federation

entities, entity views, and representation of those views is accomplished without affecting

existing model components or relationships and therefore without affecting existing

translations and existing interoperability data path implementations.

Modifying existing FCRs to change the representation of the FCR Schema

attributes and operations presents a potential problem. No FCR versioning support is

provided in the FIOM. Using inheritance to support versioning is complicated by the use

of the FCR Schema Inheritance Hierarchy to capture relationships between different

views of real-world entity. Using inheritance at the FEV/FCR level would introduce

problems associated with multiple inheritance. Therefore, implementation of versioning

support through inheritance would have to be implemented at the FE or FIOM level.

In summary, additions to the federation that do not require modification to

existing FCR Schema attribute and operation representations can be made without

impacting interoperation of the original system federation. Additions or changes that do

require modification to existing FCR Schema attribute and operation representations may

affect existing translations used to resolve representational differences between CCR and

FCR Schemas. Therefore, the OOMI is considered to provide partial support for

federation extensibility.

8. Information Exchange Versus Joint Task Execution

 244

The OOMI provides the capability for resolving system heterogeneities during

both information exchange and joint task execution. As discussed in Section VII.A and

reiterated in Section VIII.B.3, for information exchange the OOMI translator(s) convert

exported information from the source system model to an equivalent model required by

the destination system in a two-step translation process. For joint task execution, the

OOMI translator(s) similarly convert the name and parameters used to request a remote

system operation from the client system model to the equivalent model required by the

remote server system.

C. RECOMMENDATIONS FOR FUTURE RESEARCH
As an extension of the work provided in this dissertation, six areas for future

research are recommended. First, an evaluation of the efficiency and effectiveness of the

OOMI in creating an interoperable federation from a sample group of independently

developed systems is recommended. Second, investigation of potential enhancements to

the syntactic and semantic correlation methodology used to compare component and

federation models of the real-world entities that define the interoperation among systems

should be considered. Third, further research is recommended to determine the means

where information from two or more different producers can be combined to create a new

view satisfying a consumer’s requirements. Fourth, an investigation of areas where the

correlation methodology used for comparing component and federation models of shared

entities can be expanded to other aspects of the FIOM construction process should be

conducted. Fifth, extension of the OOMI IDE to operate as a distributed network

application, thereby serving as an enabler for the broader application of the FIOM in

providing an interoperability framework across a domain or domain segment, is

suggested. Finally, an investigation of the application of the methodology described in

this dissertation to the real-time system domain should be considered.

1. Evaluation of Efficiency and Effectiveness of OOMI in Creating an
Interoperable Federation of Systems

Key areas implemented in the initial OOMI IDE prototype include the 1) User

Interface, 2) Component Model Correlator, 3) Translation Generator, 4) FIOM Database

and 5) portions of the Federation Entity Manager. In addition, implementation of the

core heterogeneity resolution functionality of the OOMI translator has been completed.

Completion of the OOMI IDE prototype implementation and integration of the OOMI

translator core functionality into either a wrapper-based or middleware application is

 245

required in order to evaluate the efficiency and effectiveness of the OOMI in creating an

interoperable federation from a sample group of autonomously developed component

systems. Such an evaluation should include measurement of the time and effort required

to create a federation of interoperable systems using the OOMI, an assessment of the

OOMI’s capability for resolving the complete list of heterogeneities specified in

Section II.A.2, and an appraisal of the correlation methodology used for FIOM

construction.

While Section VIII.B detailed the methodology used by the OOMI for resolving

each of the types of heterogeneity specified in Section II.A.2, a complete assessment of

the OOMI’s capability for heterogeneity resolution requires application of the

methodology for actual system integration. Such an assessment would require integration

of systems exhibiting the complete spectrum of heterogeneities specified in

Section II.A.2.

The primary metrics to be used for an assessment of the correlation methodology

used for FIOM construction are a determination of the precision and recall values

attained when correlating component and federation models of the real-world entities

involved in system interoperation. As discussed in Sections VI.B.2.a and VI.B.2.b the

interoperability engineer can set a threshold for display of candidate matches returned by

either the semantic or syntactic correlation methodologies or by a combination of the two

methods. Values for precision and recall should be computed for each of these possible

correlation alternatives, using a range of threshold values as input.

2. Enhancements to Correlation Methodology

a. Semantic Correlation Methodology

 246

The semantic correlation methodology used in the initial prototype OOMI

IDE is limited to providing a percent of keywords in the syntax component of a CCR

matching keywords in an FCR’s syntax component. Enhancement of the semantic

correlation methodology to include synonyms to the CCR keyword as matches should

increase precision and recall values returned by the semantic correlator. Further

improvement should also result from inclusion of a concept search feature such as

provided with the Personal Librarian (PL) tool found in MITRE’s DELTA tool

[BFH+95].

b. Syntactic Correlation Methodology
Improvements in the syntactic correlation methodology used in the OOMI

IDE can be made in two areas. First, an increase in the number of data schema related

elements included in the discriminator vectors used for neural network training and

correlation determination should improve correlator performance. Second, inclusion of

data content as well as schema information in constructing the discriminator vectors for

both component and federation models will add a limited semantic discrimination

capability to the neural networks used for model correlation.

Additional schema related elements that could be incorporated in the

discriminator vectors include:

• data precision
• whether nullable variables are allowed
• number of possible values for enumerable types
• whether default value is provided

While not a complete list of schema related information that might be

available, the above elements should be easily extractable from the schema used to define

a real-world entity’s structure and content.

In the original SEMINT tool, the authors used data content as well as

schema related information for constructing the discriminator vectors [LC00]. The

addition of statistical information on the actual contents of the XML documents being

produced and consumed by a system could provide a limited perspective on the semantics

of an entity’s attributes or operations. Additional data content level information such as

the maximum and minimum values observed, and statistics on such observed values to

include the average, standard deviation, and coefficient of variance could potentially help

discriminate between elements that have the same type and composition. For example,

two elements could be modeled as six digit integers, but each provide a different usage;

i.e., one element’s values are always in the range of 000000 to 235959 indicating a

possible time-related quantity, whereas the other element’s values range from 000000 to

999999 signifying an unrestricted numeric quantity. Capturing data content information

on these two elements would enable the neural network to distinguish their different uses.

 247

3. Enabling Join Operations for Federation Entity View Definition
In order to avoid difficulties with multiple inheritance in the construction of the

FCR Schema Inheritance Hierarchy, join operations where information from two or more

different producers can be combined to create a new view satisfying a consumer’s

requirements are not permitted. Methods for enabling such join operations while

minimizing the difficulties associated with multiple inheritance are identified as an area

for future research.

4. Expansion of Correlation Methodology Application During FIOM
Construction

a. Application of Correlation Methodology to Mapping of
Corresponding Attributes and Operations during Translation
Generation.

Using correspondences between component and federation models

identified by the user, the OOMI IDE Translation Generator provides a framework for

translation definition. The user is presented with a graphical representation of the CCR

and FCR Schemas from a Federation Entity View (FEV) and then given the capability to

match attributes and operations between the two representations of that view via a “click-

to-select” procedure. Applying the correlation methodology defined in Section VI.B.2 to

the attribute and operation mapping process might prove beneficial in reducing the time

and effort required for translation creation. Attribute and operation correlation

techniques could be used to provide a candidate mapping for interoperability engineer

approval.

b. Application of Correlation Methodology and Behavioral
Equivalence Determination Algorithms to Modification of FIOM
to Provide Required One-To-One Correspondence Between CCR
and FCR Schemas During CCR Registration.

If during FIOM construction, an existing FCR Schema cannot be found

whose attribute and operation sets provide a one-to-one correspondence with the CCR

Schema attributes and operation sets for the CCR being registered and whose operations

are behaviorally equivalent, then such an FCR Schema must be added to the FIOM. The

conforming FCR Schema can be added either through addition of a new FE with

constituent FCR and defining FCR Schema or through generalization or specialization of

an existing FCR Schema. When creating a new FCR Schema through generalization of
 248

an existing FCR Schema, the interoperability engineer must identify the attributes and

operations in the selected existing FCR Schema that correspond to the attributes and

operations of the CCR Schema being registered. In addition he must verify behavioral

equivalence between the two schemas’ operations.

A similar situation exists when creating a corresponding FCR Schema

through extension of an existing FCR Schema. The interoperability engineer selects the

FCR Schema that most closely corresponds to the CCR Schema being registered. He

then must provide a mapping of the attributes and operations in the selected existing FCR

Schema that correspond to the attributes and operations of the CCR Schema being

registered. In addition, he must define the FCR Schema attributes and operations for the

new FEV that correspond to the unmapped CCR Schema attributes and operations using

information contained in the Federation Ontology.

The scenarios outlined above present three opportunities for future

research. First, investigation of how the correlation methodology defined in

Section VI.C.2 could be applied to the process of mapping CCR and FCR Schema

attributes and operations needed for creating an FCR Schema corresponding to the CCR

Schema being registered. Second, an investigation of how the correlation methodology

could be applied to locating information in the Federation Ontology to be used during the

addition of new attribute and operations to the FCR Schema. The third opportunity for

potential research is an investigation of possible algorithms that can help the

interoperability engineer determine whether corresponding operations between an FCR

and CCR Schema are behaviorally equivalent.

5. Extending OOMI IDE to Operate as a Distributed Network
Application

Another area for future research would be to develop a session-layer networking

protocol that allows the OOMI IDE to be deployed as a distributed network application

accessible via the Internet. The protocol would serve as an International Standards

Organization (ISO) Open Systems Interconnection (OSI) session layer protocol that

would be implemented on top of transport and internet protocols such as TCP/IP [Fei99].

By extending the OOMI IDE to operate as a distributed network application, the

 249

advantages gained through the creation of an FIOM for a specified federation of systems

can be extended to a domain or higher level.

The key to success in sharing information between independently developed

systems is to develop a common, flexible framework under which all entities can resolve

their differences. The framework should provide a common model of the information to

be shared in order to minimize the number of translations required to resolve differences

among systems. The framework should be flexible in order to allow modification to the

model without impacting existing applications’ use of the model. The FIOM provides the

framework required to allow dissimilar systems to communicate. In this sense the FIOM

provides a function similar to that envisioned by the DII/COE XML Namespace Registry

[DII01]. However, information included with the FIOM provides more that just the name

and type information provided in the DII/COE XML Namespace Registry for the entities

shared among systems. It provides sufficient information for both federation and

component models of those shared entities to resolve the full spectrum of heterogeneities

discussed in Section II.A.2.

Development of a distributed, network-based OOMI IDE application serves as an

enabler for defining an FIOM across a wider problem environment. By making the

OOMI IDE available across the Internet, interoperability engineers from an entire domain

or domain segment could participate in construction of the Federation Entities to be

shared among systems. Using functionality proposed for the Federation Ontology

Manager discussed in Section V.D.4, an interoperability engineer could select the

appropriate federation representation for a real-world entity of interest or nominate a

change to the Federation Ontology if such an entity is not found. The resulting FIOM

would provide a common language for communication within the domain or domain

segment [Law01].

6. Resolution of Modeling Differences in Real-Time Systems

 250

In addition to problems associated with differences in modeling of heterogeneous

systems in a federation, achieving interoperability among real-time and non-real-time

systems presents added challenges. Under the OOMI differences in what characteristics

heterogeneous systems use to model a real-world entity and differences in how those

characteristics are represented are resolved. In addition, real-time systems are concerned

with coordinating when the information or operations characterizing such real-world

entities are shared among federation systems. In order for such real-time systems to

interoperate, they not only require resolution of modeling differences among systems but

also require that the information and operations shared among systems be presented in an

expected sequence and that specified timing constraints be met.

Systems such as Luqi’s Computer-Aided Prototyping System (CAPS) [LB88] can

be used to create a system federation that addresses the timing concerns associated with

real-time systems. For example, the Prototype System Description Language (PSDL)

used in CAPS provides mechanisms for specifying timing constraints required for real-

time operation such as Maximum Execution Time (MET), Period, and Finish Within

(FW) for periodic events and MET, Minimum Calling Period (MCP) and Maximum

Response Time (MRT) for sporadic events [LBY88]. However, such systems typically

assume a homogeneous model of the problem environment and do not take modeling

differences associated with heterogeneous systems into consideration.

Combining the capabilities of a real-time modeling system such as CAPS and the

heterogeneous system modeling difference resolution capabilities of the OOMI to support

the interoperation of real-time and non-real-time systems is identified as an area of

interest for future research. Possible alternatives for accomplishing such an objective

include incorporating timing constraint resolution mechanisms in the OOMI, including

the heterogeneous system modeling difference resolution capability into a CAPS or

similar system, or the use of a layered approach whereby modeling difference resolution

is accomplished using the OOMI and timing constraints are imposed by a CAPS using

PSDL or a similar real-time control mechanism.

D. CONCLUDING REMARKS
In the Chapter I introduction to this dissertation, I presented the following

hypothesis in response to the question of whether computer aid could be applied to the

problem of resolving data modeling differences among systems targeted for integration in

order to enable system interoperability.

By using a model-based approach, a computer-aided methodology can be
provided to aid in the resolution of data modeling differences among systems
targeted for integration in order to enable system interoperability.

 251

As evidenced by the Section VIII.B evaluation of the Object-Oriented Method for

Interoperability (OOMI) presented in this dissertation against the interoperability

comparison criteria specified in Section II.B, the above hypothesis is affirmed. The

OOMI provides such a methodology.

 252

APPENDIX A: MODIFYING FIOM TO PROVIDE REQUIRED
CORRESPONDENCE BETWEEN CCR AND FCR SCHEMAS

DURING CCR REGISTRATION

A. ADDING NEW FEDERATION ENTITY (FE) TO FEDERATION
INTEROPERABILITY OBJECT MODEL (FIOM)
If during Component Class Representation (CCR) registration there is no

Federation Entity (FE) in the Federation Interoperability Object Model (FIOM) that

corresponds to the same real-world entity as the CCR being registered, then the

interoperability engineer must define a new FE for that real-world entity. Such could

potentially be the case when adding the first component system model of a real-world

entity to the FIOM. The newly defined FE will include a Federation Entity View (FEV)

with Federation Class Representation (FCR) Schema containing attribute and operation

sets that exhibit a one-to-one correspondence with the CCR Schema attribute and

operation sets. That is, a function f: FCR CCR must exist mapping the FCR Schema

attribute and operation sets (FCR(Αε, Ωε)) to CCR attribute and operation sets

(CCR(Αε, Ωε)) that is one-to-one and onto and whose operations are behaviorally

equivalent. New FCR Syntax and FCR Semantics components will be automatically

generated from this FCR Schema and included with the new FEV. The CCR, with

component CCR Schema, CCR Syntax, and CCR Semantics, will also be included with

the new FEV and an association established between the new FEV’s FCR Schema and

the schema for the CCR being registered. The Interoperability Engineer is responsible

for definition of the FCR Schema attributes and operations corresponding to the CCR

Schema attribute and operation sets.

In order to illustrate the creation of a new FE when adding the first component

system model of a real-world entity to the FIOM, I will show the addition of the first

component system model of the example ground combat vehicle real-world entity seen in

Figure IV-3, System A’s armoredCombatVehicle, to the FIOM. As indicated by the class

correlation process and confirmed by the interoperability engineer, initially the FIOM

will not contain an FE corresponding to the ArmoredCombatVehicle_CCR_Schema

 253

depicted in Figure A-1. Therefore, the interoperability engineer must define a new FE to

represent the real-world entity modeled by System A’s armoredCombatVehicle.

ArmoredCombatVehicle_CCR_Schema : CCR_Schema

acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType()
getAcvPosition()
getAcvTime()
getAcvRange()
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

Federation Interoperability Object Model (FIOM)

. . .

.

.

.

groundWeaponSystem: FE

groundWeaponSystem_View1
groundWeaponSystem_View2
 ...
groundWeaponSystem_ViewJ

<<FE>>

enemyOrderOfBattle : FE

enemyOrderOfBattle_View1
enemyOrderOfBattle_View2
 ...
enemyOrderOfBattle_ViewK

operation(arg list):return type

<<FE>>

artillery : FE

artillery_View1
artillery_View2
 ...
artillery_ViewL

<<FE>>

federationEntityZ : FE

federationEntityZ_View1
federationEntityZ_View2
 ...
federationEntityZ_ViewX

<<FE>>

* 1

Figure A-1. No FE in FIOM Corresponding to CCR Being Registered

As part of this FE, the interoperability engineer must define an FEV that captures

the perspective of the real-world entity depicted by System A’s armoredCombatVehicle

model. As discussed in Section IV.C.1.b(2), System A’s perspective of the real-world

entity is defined by the attribute and operation sets contained in its ArmoredCombat-

Vehicle_CCR_Schema. The interoperability engineer will define the FCR Schema such

that it contains attribute and operation sets that exhibit a one-to-one correspondence with

the attribute and operation sets of the System A ArmoredCombatVehicle_CCR_Schema

and whose operations are behaviorally equivalent. In addition to the ArmoredCombat-

Vehicle_CCR_Schema, this FEV will include schemas from all models of the real-world
 254

entity having the same view as System A’s ArmoredCombatVehicle_CCR_Schema.

Although the component and federation models included with an FEV share the same

view of the real-world entity, each may represent their defining attribute and operation

sets differently.

Names used for the FCR Schema, as well as names and representations used in its

attribute and operation sets, will be taken from the Federation Ontology as discussed in

Section V.D.2.a(1). Similarly, the FE and FEV names will be taken from the Federation

Ontology and will correspond with the names used for the FCR Schema. For our

example, the new FE will be named groundCombatVehicle. The new FEV that has the

same view of the real-world entity as the System A ArmoredCombat-

Vehicle_CCR_Schema will be named groundCombatVehicle_View1. Lastly, the

corresponding FCR and FCR Schema will be named groundCombatVehicle_View1_FCR

and GroundCombatVehicle_View1_FCR_Schema, respectively. Figure A-2 illustrates

this new FE with FEV containing both the FCR and CCR with their constituent Schemas,

Syntax, and Semantics components. An association between the included FCR and CCR

Schemas is also included to indicate the one-to-one correspondence between their

attribute and operation sets.

B. ADDING COMPONENT CLASS REPRESENTATION (CCR) TO
EXISTING FEDERATION ENTITY (FE)
If an FE exists in the FIOM for the real-world entity modeled by the CCR being

registered, then the interoperability engineer must either find an existing FEV defined for

the FE that has the same view of the real-world entity as the CCR, or must add such an

FEV to the FE. The views (FEVs) of the FE are examined to determine the relationship

between the Schema properties of the CCR being registered and those of the FCR defined

for each of the FE’s views. The correlation methodology described in Section VI.B can

be used to assist the Interoperability Engineer in making this determination. This

assistance is limited in the initial prototype OOMI IDE to helping find the FEV whose

FCR Schema provides the closest match to the CCR Schema being registered; however,

expansion of this assistance to identify the relationships between individual attributes and

operations has been identified as an area for future research.

 255

groundCombatVehicle

groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType()
getPosition()
getTime()
getRange()
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType()
getAcvPosition()
getAcvTime()
getAcvRange()
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

1

1

GroundCombatVehicle_View1_FCR_Syntax

GroundCombatVehicle_View1_FCR_Semantics

1

1

1

ArmoredCombatVehicle_CCR_Syntax

ArmoredCombatVehicle_CCR_Semantics

1
1

1

Figure A-2. New FE Defined With FEV Having Same Perspective of Real-World

Entity as CCR Being Registered

1. Adding CCR to Existing Federation Entity View (FEV)
If there is an existing FEV defined for the FE whose FCR Schema attribute and

operation sets exhibit a one-to-one correspondence with the Schema attribute and

operation sets of the CCR being registered, then the CCR, with component CCR Schema,

CCR Syntax, and CCR Semantics, is included with the FEV. Such would be the case if

there exists a function f: CCR FCR mapping the CCR Schema attribute and operation

 256

sets (CCR(Αε, Ωε)) to FCR Schema attribute and operation sets (FCR(Αε, Ωε)) that is

one-to-one and onto and whose operations are behaviorally equivalent. Automation of

the process for determining behavioral equivalence has been identified as an area for

further research.

Continuing the registration example begun in Appendix A Section A, suppose the

attributes and operations for System B’s MechanizedCombatVehicle_CCR_Schema

corresponded to the attributes and operations of the GroundCombat-

Vehicle_View1_FCR_Schema as depicted in Figure A-3 below. That is, there is a

function f1: CCR FCR that can be defined mapping MechanizedCombat-

Vehicle_CCR_Schema attribute and operation sets to GroundCombat-

Vehicle_View1_FCR_Schema attribute and operation sets that is one-to-one and onto. In

addition, suppose their operations are behaviorally equivalent. In this case System B’s

mechanizedCombatVehicle_CCR, with constituent components MechanizedCombat-

Vehicle_CCR_Schema, MechanizedCombatVehicle_CCR_Syntax, and Mechanized-

CombatVehicle_CCR_Semantics, would be included with groundCombatVehicle_View1

and associations established between the MechanizedCombatVehicle_CCR_Schema and

the GroundCombatVehicle_View1_FCR_Schema as shown in Figure A-4.

MechanizedCombatVehicle_CCR_Schema : CCR_Schema

mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

<<CCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType()
getPosition()
getTime()
getRange()
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

Figure A-3. One-To-One Correspondence Between CCR and FCR Schema Properties

2. Adding New View to FE

 257

If the FE does not include a view whose FCR Schema attribute and operation sets

have a one-to-one correspondence with the attribute and operation sets of the CCR

Schema being registered and whose operation sets are behaviorally equivalent, then a

new FEV with FCR Schema meeting these criteria must be defined for the FE. The new

groundCombatVehicle

groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType()
getPosition()
getTime()
getRange()
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType()
getAcvPosition()
getAcvTime()
getAcvRange()
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

1

1

GroundCombatVehicle_View1_FCR_Syntax

GroundCombatVehicle_View1_FCR_Semantics

1

1

1

ArmoredCombatVehicle_CCR_Syntax

ArmoredCombatVehicle_CCR_Semantics

1
1

1

mechanizedCombatVehicle_CCR

<<CCR Schema>>
1

MechanizedCombatVehicle_CCR_Syntax

MechanizedCombatVehicle_CCR_Semantics

1
1

1

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

 258

Figure A-4. CCR Added to Federation Entity View Exhibiting One-To-One
Correspondence Between CCR and FCR Schema Properties

FEV will be derived from an existing view of the FE defined for the real-world entity

modeled by the CCR being registered. The new FEV’s defining FCR Schema will be

constructed either through specialization or generalization of the existing view’s FCR

Schema. The choice of FCR Schema to specialize or generalize will be determined by

the interoperability engineer, but the FCR Schema having the closest correspondence

with the attribute and operation sets of the CCR Schema being registered should be

selected. The correlation methodology described in Section VI.B can be used to assist

the Interoperability Engineer in making this decision. Determination of whether the new

FEV’s FCR Schema will be defined by specialization or generalization of the selected

FEV’s FCR Schema will be dependent upon the relationship between CCR and FCR

Schema attribute and operation sets. Assistance in establishing the relationships between

individual attributes and operations has been identified as an area for future research.

a. CCR Schema Properties Subset of FCR Schema Properties
If, for the FEV selected, there is a function f: CCR FCR mapping the

CCR Schema attribute and operation sets (CCR(Αε, Ωε)) to the FEV’s FCR Schema

attribute and operation sets (FCR(Αε, Ωε)) that is one-to-one but not onto, then the

interoperability engineer should define a new FEV with FCR Schema that generalizes the

selected existing FEV’s FCR Schema. Attribute and operation sets for the new FEV’s

FCR Schema should be created such that they exhibit a one-to-one correspondence with

the attribute and operation sets of the CCR Schema being registered. In addition, in order

to prevent difficulties associated with multiple inheritance, the selected FCR Schema

should not already have a supertype in the FCR Schema Inheritance Hierarchy. If the

selected FCR Schema does already extend another FCR Schema, another FEV should be

selected as the basis for registering the CCR.

For example, in Figure A-5 the interoperability engineer selects ground-

CombatVehicle_View1 as the view whose FCR Schema has the closest correspondence

with the attribute and operation sets of the CCR Schema being registered, Armored-

MilitaryVehicle_CCR_Schema. For these schemas, a one-to-one function

f2: CCR FCR can be defined mapping ArmoredMilitaryVehicle_CCR_Schema

attributes designation, position, and time and the related get and set operations for these

 259

attributes to GroundCombatVehicle_View1_FCR_Schema attributes type, position and

time and corresponding get and set operations as depicted. However, f2: CCR FCR is

not onto since GroundCombatVehicle_View1_FCR_Schema attribute range and related

get and set operations do not have corresponding elements in the domain schema,

ArmoredMilitaryVehicle_CCR_Schema. Therefore the interoperability engineer should

define a new FEV with FCR Schema that generalizes GroundCombat-

Vehicle_View1_FCR_Schema.

ArmoredMilitaryVehicle_CCR_Schema : CCR_Schema

designation : Designation
position : Position
time : Time

getDesignation()
getPosition()
getTime()
setDesignation(Designation)
setPosition(Position)
setTime(Time)

<<CCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType()
getPosition()
getTime()
getRange()
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

Figure A-5. CCR Schema Properties Subset of FCR Schema Properties

 260

The new FEV’s FCR Schema will contain attributes and operations from

the selected existing FEV’s FCR Schema that correspond to the attributes and operations

contained in the CCR Schema being registered. This will provide a one-to-one

correspondence between the attribute and operation sets of the CCR Schema being

registered and the new FEV’s FCR Schema. The selected existing FEV’s FCR Schema

will be modified such that it inherits the attributes and operations from the newly created

FEV’s FCR Schema and contains the remaining attributes and operations originally part

of the existing FEV’s FCR Schema that are not inherited from the new supertype FCR

Schema. New FCR Syntax and Semantics components will be generated from the new

supertype FCR Schema. FCR Syntax and Semantics components for the existing FCR

are unaffected. The CCR, with component CCR Schema, CCR Syntax, and CCR

Semantics, will then be included with the new FEV and an association established

between the new FEV’s FCR Schema and the CCR Schema being registered. Assistance

will be provided by the Integrated Development Environment (IDE) in creating the new

view with component FCR and FCR Schema that generalizes the selected existing FEV’s

FCR Schema; however the interoperability engineer must identify the FCR Schema

attributes and operations in the selected existing FEV that correspond to the CCR Schema

attributes and operations.

From the example FCR Schema and CCR Schema correspondence shown

in Figure A-5, a new FEV, groundCombatVehicle_View2, is defined from the view

selected by the interoperability engineer, groundCombatVehicle_View1, and included

with the groundCombatVehicle FE. As seen in Figure A-6, GroundCombat-

Vehicle_View2_FCR_Schema generalizes GroundCombatVehicle_View1_FCR_Schema

and contains attributes type, position, and time and their related get and set operations

from GroundCombatVehicle_View1_FCR_Schema. These are the attributes and

operations from GroundCombatVehicle_View1_FCR_Schema that correspond to the

attributes and operations contained in ArmoredMilitaryVehicle_CCR_Schema. This

provides the required one-to-one correspondence between the attribute and operation sets

of the CCR Schema being registered and the corresponding FEV’s FCR Schema.

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

Figure A-6. Generalized FCR Schema Added to FEV

As shown in Figure A-7, groundCombatVehicle_View2_FCR, with

constituent FCR Schema, Syntax, and Semantics components, is included with the new

groundCombatVehicle_View2 FEV. Subsequently, armoredMilitaryVehicle_CCR, with

constituent CCR Schema, Syntax, and Semantics components, is then included with

groundCombatVehicle_View2 and associations established between the CCR Schema

and FCR Schema for future reference by the translator. Syntax and semantics

 261

components for the FCR and CCR as well as previously registered CCRs for ground-

CombatVehicle_View1 have been omitted to enhance readability.

groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR

armoredMilitaryVehicle_CCR

groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

<<CCR Schema>>

1

1
ArmoredMilitaryVehicle_CCR_Schema : CCR_Schema

designation : Designation
position : Position
time : Time

getDesignation()
getPosition()
getTime()
setDesignation(Designation)
setPosition(Position)
setTime(Time)

Figure A-7. FEV Containing Generalized FCR Schema Defined for FE

b. FCR Schema Properties Subset of CCR Schema Properties
If, for the FEV selected, there is a function f: FCR CCR mapping the

FEV’s FCR Schema attribute and operation sets (FCR(Αε, Ωε)) to CCR Schema attribute

and operation sets (CCR(Αε, Ωε)) that is one-to-one but not onto, then the interoper-

ability engineer should define a new FEV whose FCR Schema specializes the selected

existing FEV’s FCR Schema. Attribute and operation sets for the new FEV’s FCR

 262

Schema should be created such that they exhibit a one-to-one correspondence with the

attribute and operation sets of the CCR Schema being registered. For example, in Figure

A-8 the interoperability engineer selects groundCombatVehicle_View2 as the view

whose FCR Schema has the closest correspondence with the attributes and operations of

the next CCR Schema being registered, System D’s ArmoredFighting-

Vehicle_CCR_Schema. For these schemas, a one-to-one function f3: FCR CCR can

be defined mapping GroundCombatVehicle_View2_FCR_Schema attributes type,

position, and time, and related get and set operations to ArmoredFighting-

Vehicle_CCR_Schema attributes afvClassification, afvLocation, and afvObsTime and its

related get and set operations. However, f3: FCR CCR is not onto since Armored-

FightingVehicle_CCR_Schema attribute afvStatus and operations getAfvStatus() and

setAfvStatus(AfvStatus) do not have corresponding elements in the domain schema,

GroundCombatVehicle_View2_FCR_Schema. Therefore the interoperability engineer

should define a new FEV with FCR Schema that extends GroundCombat-

Vehicle_View2_FCR_Schema and contains attribute and operation sets (FCR(Αε, Ωε))

that exhibit a one-to-one correspondence with ArmoredFightingVehicle_CCR_Schema

attribute and operation sets and whose operations are behaviorally equivalent to the CCR

Schema’s operations.

ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassification
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatus

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

<<CCR Schema>>

GroundCombatVehicle_View2_FCR_Schema: FCR_Schema

type
position
time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

Figure A-8. FCR Schema Properties Subset of CCR Schema Properties

 263

The new FEV’s FCR Schema will inherit the attributes and operations

defined for the existing FEV’s FCR Schema being extended. The new FEV’s FCR

Schema will also include additional attributes and operations corresponding to the CCR

Schema attributes and operations that are not represented in the existing FEV’s FCR

Schema. This will provide a one-to-one correspondence between the attribute and

operation sets of the new FEV’s FCR Schema and the CCR Schema being registered.

New FCR Syntax and FCR Semantics components that include syntactic and semantic

information for the attributes and operations inherited from the existing FCR Schema will

be generated from the new FCR Schema component. The CCR, with component CCR

Schema, CCR Syntax, and CCR Semantics, will then be included with the new FEV and

an association established between the new FEV’s FCR Schema and the CCR Schema

being registered. Assistance will be provided by the IDE in creating the new FEV with

component FCR and FCR Schema that extends the selected existing FEV’s FCR Schema;

however definition of FCR Schema attributes and operations for the new FEV that

correspond to the CCR Schema attributes and operations must be done by the

interoperability engineer using information contained in the Federation Ontology.

Continuing our example from the FCR Schema and CCR Schema

correspondence shown in Figure A-8, a new FEV, groundCombatVehicle_View3, is

defined from the view selected by the interoperability engineer, groundCombat-

Vehicle_View2, and included with the groundCombatVehicle FE. As seen in Figure

A-9, GroundCombatVehicle_View3_FCR_Schema extends GroundCombat-

Vehicle_View2_FCR_Schema. It includes additional properties, attribute status and

operations getStatus() and setStatus(Status), which correspond to ArmoredFighting

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

Figure A-9. Specialized FCR Schema Added to FEV

 264

Vehicle_CCR_Schema attribute afvStatus and operations getAfvStatus() and

setAfvStatus(AfvStatus), respectively. This provides the required one-to-one

correspondence between the attribute and operation sets of ArmoredFighting-

Vehicle_CCR_Schema and GroundCombatVehicle_View3_FCR_Schema.

As shown in Figure A-10, groundCombatVehicle_View3_FCR, with

constituent FCR Schema, Syntax, and Semantics, is included with the groundCombat-

Vehicle_View3 FEV. Subsequently, armoredFightingVehicle_CCR, with constituent

CCR Schema, Syntax, and Semantics components, is then included with groundCombat-

Vehicle_View3 and associations established between the CCR Schema and FCR Schema

for future reference by the translator. Syntax and semantics components for the FCRs

and CCRs as well as CCRs for previously registered components have been omitted to

enhance readability.

groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR
groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View3_FCR

armoredFightingVehicle_CCR

groundCombatVehicle_View3

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

<<CCR Schema>>

1

1 ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassification
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatus

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

Figure A-10. FEV Containing Specialized FCR Schema Added to FE

 265

c. CCR and FCR Schema Have Properties in Common, But No

Subset Relation Exists.
Another possibility is for the CCR Schema and the selected FEV’s FCR

Schema to have corresponding attributes or operations, but that no function

f: FCR CCR or g: CCR FCR mapping FCR Schema and CCR Schema attribute and

operation sets can be defined. In this case we can define a function

f: subset(CCR) subset(FCR) mapping a subset of the CCR Schema attributes and

operations to a corresponding subset of the FCR Schema attributes and operations that is

one-to-one and onto. For this situation the interoperability engineer should define a new

FEV with FCR Schema that generalizes the selected existing FEV’s FCR Schema, with

the generalized FCR Schema containing attributes and operations from the existing

FEV’s FCR Schema that have corresponding attributes and operations in the CCR

Schema being registered. In addition, a second new FEV should be defined with FCR

Schema that specializes the first new FEV’s FCR Schema and contains such additional

attributes and operations required to provide a one-to-one correspondence with the

attribute and operation sets of the CCR Schema being registered. Again, if the selected

FEV’s FCR Schema already extends another FCR Schema, a different FEV should be

selected as the basis for registering the CCR in order to prevent problems associated with

multiple inheritance.

To illustrate this case, I add an additional component system model of the

ground combat vehicle real-world entity to those introduced in Figure IV-3. This model,

from a component System E, names our real-world entity Tank and includes attributes

position, observationTime and radiusOfAction and includes related get and set operations

to characterize our ground combat vehicle from its perspective. In registering the CCR

Schema for the System E Tank, the interoperability engineer selects groundCombat-

Vehicle_View2 as the view whose FCR Schema has the closest correspondence to the

attributes and operations of the Tank_CCR_Schema, as seen in Figure A-11. For these

schemas, a one-to-one, onto function f4: subset(CCR) subset(FCR) can be defined

mapping Tank_CCR_Schema attributes position and observationTime and their related

 266

get and set operations to GroundCombatVehicle_View2_FCR_Schema attributes position

and time and related get and set operations as depicted.

Tank_CCR_Schema : CCR_Schema

position : Position
observationTime : ObservationTime
radiusOfAction : RadiusOfAction

getPosition()
getObservationTime()
getRadiusOfAction()
setPosition(Position)
setObservationTime(ObservationTime)
setRadiusOfAction(RadiusOfAction)

<<CCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type
position
time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

Figure A-11. CCR and FCR Schema Have Properties in Common, But No Subset
Relation Exists

A new FEV whose FCR Schema generalizes the selected existing FEV’s

FCR Schema, containing the subset of the attributes and operations from the existing

FEV’s FCR Schema that corresponds to those of the CCR Schema being registered, is

defined by the interoperability engineer. The selected existing FEV’s FCR Schema will

be modified such that it inherits the attributes and operations from the newly defined

FEV’s FCR Schema and contains additional attributes and operations originally part of

the selected existing FEV’s FCR Schema that are not inherited from the new FEV’s FCR

Schema. New FCR Syntax and FCR Semantics components will be generated from the

new FEV’s FCR Schema and included with the newly defined FEV. In addition, a

second new FEV whose FCR Schema attribute and operation sets exhibit a one-to-one

correspondence with the CCR Schema attribute and operation sets must be defined for

the FE. This second new FEV’s FCR Schema will extend the first new FEV’s

generalized FCR Schema. The second new FEV’s specialized FCR Schema will inherit

the attributes and operations defined for the first new FEV’s generalized FCR Schema.

The second new FEV’s specialized FCR Schema will also include additional attributes

and operations required to provide a one-to-one correspondence with the attribute and

operation sets of the CCR Schema being registered.

New FCR Syntax and FCR Semantics components will be generated from

this second new FEV’s specialized FCR Schema and included with the FEV. The CCR,

with component CCR Schema, CCR Syntax, and CCR Semantics, will then be included

 267

with the second new FEV and an association established between the second new FEV’s

FCR Schema and the CCR Schema being registered. Assistance will be provided by the

IDE in defining the new FEV with component FCR whose FCR Schema generalizes the

selected existing FEV’s FCR Schema. Also, assistance will be provided by the IDE in

defining the second new FEV with component FCR whose FCR Schema specializes the

first new FEV’s FCR Schema. However, the interoperability engineer is responsible for

identifying the FCR Schema attributes and operations in the selected existing FEV that

correspond to the CCR Schema attributes and operations and for defining FCR Schema

attributes and operations for the second new FEV’s specialized FCR Schema that

correspond to the CCR Schema attributes and operations that do not have a

corresponding attribute or operation in the first new FEV’s FCR Schema.

From the example FCR Schema and CCR Schema correspondence shown

in Figure A-11, a new FEV, groundCombatVehicle_View4, is defined from the FEV

selected by the interoperability engineer, groundCombatVehicle_View2, and included

with the groundCombatVehicle FE. As seen in Figure A-12, GroundCombat-

Vehicle_View4_FCR_Schema generalizes GroundCombatVehicle_View2_FCR_Schema

and contains attributes position and time with related get and set operations from the

GroundCombatVehicle_View2_FCR_Schema. These are the attributes and operations

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType()
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition()
getTime()
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

Figure A-12. Sibling to Existing FCR Schema Added to FEV

 268

from GroundCombatVehicle_View2_FCR_Schema that have a corresponding attribute or

operation in Tank_CCR_Schema. In addition, GroundCombat-

Vehicle_View5_FCR_Schema extends GroundCombatVehicle_View4_FCR_Schema. It

also includes additional properties, attribute range and operations getRange() and

setRange(Range), which correspond to Tank_CCR_Schema attribute radiusOfAction and

operations getRadiusOfAction() and setRadiusOfAction(RadiusOfAction), respectively.

This provides the required one-to-one correspondence between the attributes and

operations of the CCR Schema being registered, Tank_CCR_Schema, and the newly

added FEV’s FCR Schema, GroundCombatVehicle_View5_FCR_Schema.

As seen in Figure A-13, groundCombatVehicle_View4_FCR and ground-

CombatVehicle_View5_FCR, with constituent FCR Schema, FCR Syntax, and FCR

Semantics components are included with groundCombatVehicle_View4 and ground-

CombatVehicle_View5, respectively. Subsequently, System E Tank_CCR, with

groundCombatVehicle

groundCombatVehicle_View2_FCR

groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType()
setType(Type)

<<FCR Schema>>

groundCombatVehicle_View4_FCR
groundCombatVehicle_View4

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition()
getTime()
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View5_FCR

Tank_CCR

groundCombatVehicle_View5

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

<<CCR Schema>>

1

1 Tank_CCR_Schema : CCR_Schema

position : Position
observationTime : ObservationTime
radiusOfAction : RadiusOfAction

getPosition()
getObservationTime()
getRadiusOfAction()
setPosition(Position)
setObservationTime(ObservationTime)
setRadiusOfAction(RadiusOfAction)

Figure A-13. FEV With FCR Schema Sibling to Existing FCR Schema Added to FE
 269

constituent CCR Schema, CCR Syntax, and CCR Semantics components, is then

included with groundCombatVehicle_View5 and associations established between the

CCR Schema and FCR Schema for future reference by the translator. Again, syntax and

semantics components for both the FCR and CCR have been omitted to enhance

readability. Additionally, all FEVs whose FCR Schemas are descendants of Ground-

CombatVehicle_View2_FCR_Schema have been omitted from the figure.

d. No Correspondence Between CCR and FCR Schemas
A final possible relationship between the CCR being registered and FIOM

FEs is that an FE exists for the real-world entity modeled by the CCR being registered,

but no correspondence can be found in the FE between the CCR Schema’s attribute and

operation sets and those of an existing FEV’s FCR Schema. In this case the

interoperability engineer must define a new FEV for the FE whose defining FCR Schema

attribute and operation sets provide a one-to-one correspondence with the CCR Schema

attribute and operation sets. While the newly defined FEV’s FCR Schema has a totally

different perspective of the real-world entity being modeled than do the other FCR

Schemas for the FE (as determined by the lack of correspondence between their attribute

and operation sets), it does model the same real-world entity captured by the other FEVs.

Therefore, the relationship between this new FEV’s FCR Schema and existing FCR

Schemas for other FEVs in the FE should be reflected in the FE’s FCR Schema

Inheritance Hierarchy for future reference by the translator (discussed in Chapter VII).

This is accomplished by including a new FEV whose FCR Schema will serve as the new

root of the existing FCR Schema Inheritance Hierarchy for the FE. This new root FCR

Schema will then be used to relate the existing FEVs to the new FEV whose FCR

Schema corresponds to the schema of the CCR being registered.

 270

This new FCR Schema will generalize the existing FCR Schema

Inheritance Hierarchy root FCR Schema and will serve as the new root for the inheritance

hierarchy. The new root FCR Schema will not contain any attributes or operations. In

addition, a second new FEV should be defined whose FCR Schema specializes the first

new FEV’s FCR Schema and whose FCR Schema attribute and operation sets provide a

one-to-one correspondence with the CCR Schema attribute and operation sets of the CCR

being registered. Although it is considered unlikely in practice that two models of the

same real-world entity would not have any properties in common (otherwise they would

not be able to interoperate), it is feasible that this situation could occur as an interim step

during bottom-up construction of the FCR Schema Inheritance Hierarchy. In this case,

the process described above is necessary in order to preserve connectivity between FCR

Schema nodes comprising the FCR Schema Inheritance Hierarchy for later use by the

translator.

To illustrate the case described above, I add yet another component system

model of the ground combat vehicle real-world entity to those introduced in Figure IV-3

to my example. Instead of the command-and-control related systems introduced earlier,

this last system, System F, is a logistics management system and requires information

related to the provisioning of the modeled ground combat vehicle. As seen in Figure

A-14, System F’s model of the real-world entity is named MainBattleTank and includes

attributes fuelType and ammoType for tracking the vehicle’s provisions. The defining

MainBattleTank_CCR_Schema also includes operations for getting and setting the

provision type values.

Using the correlation software discussed in Chapter VI above to search the

FIOM for federation entities related to the component system model being registered, the

interoperability engineer discovers that the existing groundCombatVehicle FE provides a

model of the same real-world entity as the MainBattleTank_CCR_Schema being

registered. However, as depicted in Figure A-14 it is discovered that none of the views

currently defined for the FE contain an FCR Schema that has any attributes or operations

in common with the MainBattleTank_CCR_Schema’s attributes or operations.

In this case, the interoperability engineer defines a new FEV whose FCR

Schema generalizes the existing root FCR Schema in the FE’s FCR Schema Inheritance

Hierarchy. This FCR Schema will function as the new root FCR Schema for the

inheritance hierarchy and will contain no attributes or operations. The previously

existing root FCR Schema will extend this newly created FCR Schema and will

otherwise be unchanged. In addition, a second new FEV with FCR Schema whose

attribute and operation sets exhibit a one-to-one correspondence with the CCR Schema

attribute and operation sets must be defined for the FE. This second new FEV’s FCR

 271

Schema will extend the new root FCR Schema. The second new FEV’s specialized FCR

Schema will inherit the attributes and operations defined for the new root FCR Schema.

The second new FEV’s specialized FCR Schema will also include additional attributes

and operations required to provide a one-to-one correspondence with the attribute and

operation sets of the CCR Schema from the CCR being registered.

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType()
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition()
getTime()
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

MainBattleTank_CCR_Schema : CCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType()
getAmmoType()
setfuelType(FuelType)
setammoType(AmmoType)

<<CCR Schema>>

Figure A-14. No Correspondence Between CCR Schema Being Registered and Existing
FCR Schemas in FE

New FCR Syntax and FCR Semantics components will be generated from

this second new specialized FCR Schema and included with the FEV. The CCR, with

component CCR Schema, CCR Syntax, and CCR Semantics, will then be included with

the second new FEV and an association established between this FEV’s FCR Schema and

the CCR Schema. Assistance will be provided by the IDE in defining the new FEV

whose component FCR Schema serves as the new FCR Schema Inheritance Hierarchy

root and generalizes the previously existing root FCR Schema. Also, assistance will be

 272

provided by the IDE in defining the second new FEV whose component FCR Schema

specializes the new root FCR Schema. However, definition of the additional FCR

Schema attributes and operations for the second new specialized FCR Schema that

correspond to the CCR Schema attribute and operation sets must be done by the

interoperability engineer.

For the example FCR Schema and CCR Schema correspondence shown in

Figure A-14, a new FEV, groundCombatVehicle_View6, is defined from the view

containing the previous existing root FCR Schema, groundCombatVehicle_View4, and

included with the groundCombatVehicle FE. As seen in Figure A-15, GroundCombat-

Vehicle_View6_FCR_Schema generalizes GroundCombatVehicle_View4_FCR_Schema

and contains no attributes or operations. As a result, GroundCombat-

Vehicle_View6_FCR_Schema becomes the new root for the FCR Schema Inheritance

Hierarchy, leaving the previous root, GroundCombatVehicle_View4_FCR_Schema,

otherwise unchanged. In addition, GroundCombatVehicle_View7_FCR_Schema extends

GroundCombatVehicle_View6_FCR_Schema and includes attributes fuelType and

ammoType and their related get and set operations corresponding to MainBattle

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType()
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus()
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition()
getTime()
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange()
setRange(Range)

<<FCR Schema>>

<<FCR Schema>>

GroundCombatVehicle_View7_FCR_Schema : FCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType()
getAmmoType()
setfuelType(FuelType)
setammoType(AmmoType)

<<FCR Schema>>

GroundCombatVehicle_View6_FCR_Schema : FCR_Schema

Figure A-15. New Root FCR Schema With Child FCR Schema Corresponding to CCR

Schema Being Registered Included with FEV

 273

Tank_CCR_Schema attributes fuelType and ammoType and their related get and set

operations, respectively. This provides the required one-to-one correspondence between

the attribute and operation sets of the CCR Schema being registered, MainBattle-

Tank_CCR_Schema, and the newly defined FEV’s FCR Schema, GroundCombat-

Vehicle_View7_FCR_Schema.

As seen in Figure A-16, groundCombatVehicle_View6_FCR and ground-

CombatVehicle_View7_FCR, with constituent FCR Schema, FCR Syntax, and FCR

Semantics components are included with groundCombatVehicle_View6 and ground-

CombatVehicle_View7, respectively. Subsequently, mainBattleTank CCR, with

groundCombatVehicle

groundCombatVehicle_View4_FCR

groundCombatVehicle_View4

<<FCR Schema>>

groundCombatVehicle_View6_FCR
groundCombatVehicle_View6

GroundCombatVehicle_View6_FCR_Schema : FCR_Schema

<<FCR Schema>>

groundCombatVehicle_View7_FCR

Tank_CCR

groundCombatVehicle_View7

<<FCR Schema>>

<<CCR Schema>>

1

1

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition()
getTime()
setPosition(Position)
setTime(Time)

MainBattleTank_CCR_Schema : CCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType()
getAmmoType()
setfuelType(FuelType)
setammoType(AmmoType)

GroundCombatVehicle_View7_FCR_Schema : FCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType()
getAmmoType()
setfuelType(FuelType)
setammoType(AmmoType)

Figure A-16. FEV With FCR Schema Sibling to Previous Existing Root FCR Schema
Added to FE

constituent CCR Schema, CCR Syntax, and CCR Semantics components, is then

included with groundCombatVehicle_View7 and associations established between the

CCR Schema and FCR Schema for future use by the translator. Syntax and semantics

 274

components for the FCRs and CCRs as well as all FEVs whose FCR Schemas are

descendants of GroundCombatVehicle_View4_FCR_Schema have been omitted to

enhance readability.

C. SUMMARY
Appendix A details the modifications to the Federation Interoperability Object

Model (FIOM) required in order to provide the required correspondence between

component (CCR) and federation (FCR) class representation schemas during CCR

registration. Procedures are presented for cases where 1) a new FE with Federation

Entity View (FEV) must be defined for the FIOM to enable CCR registration or 2) an

existing FE is used for CCR registration. If an existing FE is used, then either the CCR

will be included with one of the FE’s existing FEVs or with a new FEV defined by

generalization or specialization of an existing FEV’s FCR Schema. The OOMI IDE

provides computer aid to the FIOM modification process during CCR registration as

indicated in Appendix A Sections A and B.

 275

THIS PAGE INTENTIONALLY LEFT BLANK

 276

LIST OF REFERENCES.

[ABK00] Anderson, R., and others, Professional XML, Wrox Press Ltd.,
Birmingham, UK, 2000.

[Ant94] Anton, H., Elementary Linear Algebra, John Wiley & Sons, Inc., New

York, NY, 1994.

[Ber00] Berg, C., Advanced Java 2 Development for Enterprise Applications, 2d

ed., Sun Microsystems Press, Prentice-Hall, Inc., Upper Saddle River,
New Jersey, 2000.

[BFH+95] Benkley, S., and others, Data Element Tool-Based Analysis (DELTA),

MITRE Corporation report MTR95B0000147, December 1995.

[BM01] Biron, P., Malhotra, A. (editors), “XML Schema Part 2: Datatypes”,

[http://www.w3.org/TR/xmlschema-2/], 2 May 2001.

[BOD01] Birbeck, M., and others, Professional XML, 2nd Edition, Wrox Press Ltd.,

Birmingham, UK, 2001.

[BLN86] Batinin, C., Lenzerini, M., Navathe, S., “A Comparative Analysis of

Methodologies for Database Schema Integration”, ACM Computing
Surveys, Volume 18, No. 4, pp. 323-364, 1986.

[BRJ99] Booch,G., Rumbaugh, J., Jacobson, I., The Unified Modeling Language

User Guide, Addison-Wesley Longman, Inc., Redding, MA, 1998.

[CHR97] Clifton, C., Housman, E., Rosenthal, A., “Experience with a Combined

Approach to Attribute-Matching Across Heterogeneous Databases”, IFIP
1997, Chapman & Hall.

[CORBA01] The Common Object Request Broker: Architecture and Specification,

Revision 2.6, Object Management Group, Inc., December 2001.

[CY01] Christie, B., Young, P., Integrated Development Environment (IDE) for

Construction of a Federation Interoperability Object Model (FIOM),
Master’s thesis, Naval Postgraduate School, Sep 2001.

[DCOM96] “DCOM Technical Overview”,

[http://www.msdn.microsoft.com/library/default.asp?url=/library/en-us/
dndcom/html/msdn_dcomtec.asp], November 14, 2001.

 277

[DDA91] Department of Defense (DoD) Directive 8320.1, DoD Data
Administration, [http://web7.whs.osd.mil/pdf/d83201p.pdf], Sep 26, 1991.

[DII01] “DII COE Data Emporium.”

[http://diides.ncr.disa.mil/xmlreg/user/index.cfm].

[EGI00] SeeBeyond White Paper 00403.102, “e*Gate Integrator, The eBusiness

Integration Platform”, Software Technologies Corporation,
November 2000.

[EIGI00] SeeBeyond White Paper “e*Index Global IdentifierTM Enabling a Single

Customer View”, SeeBeyond Technology Corporation, November 2000.

[FDM01] “Functional Description of the Mission Space.”

[http://fdms.msiac.dmso.mil/].

[Fei99] Feit, S., TCP/IP, McGraw-Hill, New York, NY, 1999.

[GL99] Guo, J., Luqi, “Object Modeling to Re-engineer Legacy Systems”, The

Eleventh International Conference On Software Engineering And
Knowledge Engineering (SEKE 99), June 17 to 19, 1999, pp. 346-353.

[GNM96] Goguen, J., Nguyen, D., Meseguer, J., Luqi, Zhang, D., Berzins, V.,

“Software Component Search”, Journal of Systems Integration, Volume 6,
No. 2, 1996, pp. 93-134.

[Gra87] Grant, J., Logical Introduction to Databases, Harcourt Brace Jovanovich,

Inc., San Diego, CA, 1987.

[GW88] SRI International Report SRI-CSL-88-9, “Introducing OBJ3”, Goguen, J.,

and Winkler, T., August 1988.

[Her97] Herman, J.S., Improving Syntactic Matching for Multi-level Filtering,

Master’s thesis, Naval Postgraduate School, 1997.

[HL96] Holowczak, R., Li, W., “A Survey on Attribute Correspondence and

Heterogeneity Metadata Representation”,
[http://www.computer.org/conferences/meta96/li/paper.html], 1996.

[HLA02] “High Level Architecture”,

[http://www.dmso.mil/public/transition/hla/].

[HM99] Hammer, J., McLeod, D., “Resolution of Representational Diversity in

Multidatabase Systems", Management of Heterogeneous and Autonomous
Database Systems, Morgan Kaufman, 1999.

 278

[KA95] Khoshafian, S., Abnous, R., Object Orientation, John Wiley and Sons,

Inc., New York, NY, 1995.

[Kay00] Kay, M., XSLT Programmer’s Reference, Wrox Press Ltd., Birmingham,

UK, 2000.

[Kir97] Kirtland, M., “The COM+ Programming Model Makes it Easy to Write

Components in Any Language”, Microsoft Systems Journal, December
1997.

[KM98] Kahng, J., McLeod D., “Dynamic Classificational Ontologies: Mediation

of Information Sharing in Cooperative Federated Database Systems”,
Cooperative Information Systems, Trends and Directions, Academic
Press, 1998.

[Koh87] Kohonen, T., “Adaptive Associative and Self-Organizing Functions in

Neural Computing”, Applied Optics, Vol. 26, 1987, pp. 4910–4918.

[Kol00] Kolb, R., “An Introduction to COM, DCOM and COM+”,

[http://www.stolles.net/fsu-swt/LV/CompSem2000/works/COM-
paper_html/], October 2000.

[KS91] Kim, W., Seo, J., “Classifying Schematic and Data Heterogeneity in

Multidatabase Systems”, IEEE Computer, Vol. 24, No. 12, pp. 12-18,
December, 1991.

[KWD99] Kuhl, F., Weatherly, R., Dahmann, J., Creating Computer Simulation

Systems, An Introduction to the High Level Architecture, Prentice Hall
PTR, Upper Saddle River, NJ, 1999.

[Law01] Lawler, G., “Federation Session Management Protocol (FSMP)”,

SPAWARSYSCEN San Diego Research Fellowship Proposal,
October, 2001.

[LB88] Luqi, Berzins, V., “Rapidly Prototyping Real-Time Systems”, IEEE

Software, pp. 25-36, September 1988.

[LBY88] Luqi, Berzins, V., Yeh, R., “A Prototyping Language for Real-Time

Software”, IEEE Transactions on Software Engineering, Vol. 14, No. 10,
October 1988, pp. 1409-1423.

[LC94] Li, W., and Clifton, C., “Semantic Integration in Heterogeneous Databases

Using Neural Networks”, Proceedings of the 20th VLDB Conference,
Santiago, Chile, 1994, pp. 1-12.

 279

[LC00] Li, W., and Clifton, C., “SEMINT: A tool for identifying attribute

correspondences in heterogeneous databases using neural networks”, Data
& Knowledge Engineering, Vol. 33 (2000), pp. 49-84.

[Lee02] Lee, S., Class Translator for the Federation Interoperability Object Model

(FIOM), Master’s thesis, Naval Postgraduate School, Mar 2002.

[LISI98] Levels of Information Systems Interoperability (LISI), C4ISR Architecture

Working Group, 30 March 1998.

[LW94] Liskov, B., Wing, J., “A Behavioral Notion of Subtyping,” ACM

Transactions on Programming Languages and Systems, Vol. 16, No. 6,
November 1994, pp. 1811-1841.

[Ngu95] Nguyen, D., An Architectural Model for Software Component Search,

Ph.D. dissertation, Naval Postgraduate School, 1995.

[OMG01] “About the Object Management Group.”

[http://www.omg.org/gettingstarted/gettingstartedindex.htm].

[Pit97] Pitoura, E., “Providing Database Interoperability through Object-Oriented

Language Constructs”, Journal of Systems Integration, Volume 7, No. 2,
August 1997, pp. 99-126.

[Pop98] Pope, A., The CORBA Reference Guide, Addison-Wesley Longman, Inc.,

Redding, MA, 1998.

[Pre01] Pressman, R., Software Engineering A Practitioner’s Approach, McGraw-

Hill, Boston, MA, 2001.

[Pri91] Prieto-Diaz, R., “Implementing Faceted Classification for Software

Reuse”, Communications of the ACM, Volume 34, No. 5, May 1991.

[Pug01] Pugh, R., Methods For Determining Object Correspondence During

System Integration, Master’s thesis, Naval Postgraduate School, Jun 2001.

[Rei01] Reinhold, M., The Java Architecture for XML Binding (JAXB),

Working-Draft Specification, Sun Microsystems, Inc.,
[ftp://ftp.java.sun.com/pub/xml/987dfjaxb10ea3ds/jaxb-0_21-wd-
spec.pdf], 30 May 2001.

[Ros98] Rosenberger, J., Teach Yourself CORBA in 14 Days, Sams Publishing,

Indianapolis, Indiana, 1998.

 280

[RRH00] Ralston, A., Reilly, E., and Hemmendinger, D., Encyclopedia of Computer
Science, Fourth Edition, Nature Publishing Group, London, UK, 2000.

[RRS96] Renner, S., Rosenthal, A., Scarana, J., “Data Interoperability:

Standardization or Mediation”, IEEE Metadata Workshop, Silver Spring,
MD, April 1996.

[SG96] Shaw, M., Garlan, D., Software Architecture: Perspectives on an

Emerging Discipline, Prentice Hall, 1996.

[She02] Shedd, S., Semantic and Syntactic Object Correlation in the Object-

Oriented Method for Interoperability, Master’s thesis, Naval Postgraduate
School, Sep 2002.

[Smi01] Smith, S., “eGate Technical Overview”, Presentation to Defense

Manpower Data Center, June 2001.

[Sta00] Stallings, W., Data and Computer Communications, Sixth Edition,

Prentice-Hall, Inc., Upper Saddle River, NJ, 2000.

[Ste91] Steigerwald, R. A., Reusable Software Component Retrieval via

Normalized Algebraic Specifications, Ph.D. dissertation, Naval
Postgraduate School, 1991.

[SV02] Schmidt, D., and Vinoski, S., “Object Interconnections: CORBA and

XML, Part 1: Versioning”, C/C++ Users Journal,
[http://www.cuj.com/experts/1905/vinoski.htm]

[TWS02] “Tomahawk Weapon System, Afloat Planning System, and Theater

Mission Planning Center”,
[http://www.fas.org/man/dod-101/sys/ship/weaps/tmpc-aps.htm].

[WCS00] Walsh, A., Couch, J., Steinberg, D., Java 2 Bible, IDG Books Worldwide,

Inc., Foster City, CA, 2000.

[Wie93] Wiederhold, G., “Intelligent Integration of Information”, ACM-

SIGMOD 93, Washington, DC, May 1993, pp. 434-437.

[WK94] Williams, S., Kindel, C., “The Component Object Model: A Technical

Overview”, [http://msdn.microsoft.com/library/en-us/dncomg/html/
msdn_comppr.asp].

[WO00] Wing, J.M., “Respectful Type Converters”, IEEE Transactions on

Software Engineering, Volume 26, Number 7, July 2000, pp. 579-593.

 281

[YBG02] Young, P., Berzins, V. Ge, J., Luqi, “Using an Object Oriented Model for
Resolving Representational Differences between Heterogeneous
Systems”, The 17th ACM Symposium on Applied Computing, Madrid,
Spain, March 10 – 14, 2002.

[ZW93] Zaremski, A.M., Wing, J.W., “Signature Matching: A Key to Reuse”,

SIGSOFT ’93, ACM 0-8971-625-5/93/0012, pp. 182-190.

[ZW95] Zaremski, A.M., Wing, J.W., “Specification Matching of Software

Components”, SIGSOFT ’95, ACM 0-89791-716-2/95/0010, pp.6-17.

 282

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center ... 2

8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library .. 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Professor Luqi ... 1
Software Engineering Automation Center
Naval Postgraduate School
Monterey, CA 93943

4. Professor V. Berzins.. 1
Software Engineering Automation Center
Naval Postgraduate School
Monterey, CA 93943

5. Professor G. Jun .. 1
Software Engineering Automation Center
Naval Postgraduate School
Monterey, CA 93943

6. Professor W. Kemple .. 1
Command, Control, and Communications
Naval Postgraduate School
Monterey, CA 93943

7. Mr. R. Riehle... 1
Software Engineering Automation Center
Naval Postgraduate School
Monterey, CA 93943

8. Dr. Edmund Freeman .. 1
Vice President and Manager, Integrated Systems Technology Operation
Technology Research Group
Science Applications International Corporation
1213 Jefferson Davis Highway, Suite 1500, Arlington, VA 22202-4304

 283

9. CAPT Paul Young... 10
305 Morning Dove Way
Arnold, MD 21012

 284

	INTRODUCTION
	QUEST FOR SYSTEM INTEROPERABILITY
	LIMITATIONS WITH CURRENT APPROACHES TOWARD ACHIEVING INTEROPERABILITY
	RESEARCH QUESTION AND HYPOTHESIS
	OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI) OVERVIEW
	CONTRIBUTIONS PROVIDED BY THIS DISSERTATION
	IMPACT AND LONG-TERM SIGNIFICANCE OF DISSERTATION�
	DISSERTATION ORGANIZATION

	SURVEY OF PREVIOUS WORK ON ACHIEVING INTEROPERABILITY AMONG INDEPENDENTLY DEVELOPED SYSTEMS
	MODELING DIFFERENCES AMONG SYSTEMS
	Causes of Modeling Differences
	Kinds of Modeling Differences
	Heterogeneity of Hardware and Operating Systems
	Heterogeneity of Organizational Models
	Heterogeneity of Structure
	Heterogeneity of Presentation
	Heterogeneity of Meaning
	Heterogeneity of Scope
	Heterogeneity of Level of Abstraction
	Heterogeneity of Temporal Validity

	CRITERIA FOR EVALUATING INTEROPERABILITY APPROACHES
	Types of Heterogeneity Addressed
	Capability for Application of Computer Aid for Model Correlation
	Required Knowledge of Remote Operations
	Required Modification to Existing System
	Translation Methodology
	Capability for Application of Computer Aid for Translation Development
	Support for Federation Extensibility
	Information Exchange Versus Joint Task Execution

	APPROACHES FOR ACHIEVING INTEROPERABILITY AMONG HETEROGENEOUS SYSTEMS
	Common Object Request Broker Architecture (CORBA)
	CORBA Overview
	CORBA Architecture Overview
	Object Request Broker (ORB). An ORB is a software component whose purpose is to facilitate communications between objects. When an application component wants to use a service provided by another component, it must first obtain a reference for the ob
	Interface Definition Language \(IDL\). One of�
	CORBA Communications Model. In the CORBA Communications Model, communication between objects takes place between a client and a server. A client is an application that uses the services of a CORBA object, i.e. an application that invokes a method or me
	CORBA Object Model. In addition to the communications model that specifies how communications between objects occur, CORBA features an object model that describes how objects are represented in the system. Because CORBA was designed for distributed sys
	CORBA Clients and Servers. As mentioned previously, communication between objects in CORBA takes place between a client and a server. To facilitate this communication and to achieve interoperability between clients and servers implemented in a variety
	CORBAservices and CORBAfacilities. CORBAservices and CORBAfacilities provide a set of standardized capabilities for use by all applications. These capabilities include event management, licensing, object persistence, naming, security, transactions, use

	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed.
	Capability for Application of Computer Aid for Model Correlation. CORBA requires that method parameters be provided in the representation expected by the server object. It is the responsibility of the system designer to provide parameters that agree in
	Required Knowledge of Remote Operations. Because information exchange and joint task execution are accomplished in a CORBA application by client invocation of server method(s), knowledge of the objects and methods available on the server is required.
	Required Modification to Existing System. A serv
	Translation Methodology. In the CORBA communications model, communications between applications is facilitated by the use of an Object Request Broker (ORB). The ORB uses a marshaling-unmarshaling process to translate method parameters from the source
	Capability for Application of Computer Aid for Translation Development. Once an application component has obtained a reference to an object whose services it wants to use, it can invoke methods on that object. Generally, those methods take one or more
	Support for Federation Extensibility. CORBA effects joint task execution and information exchange among components of a system federation by providing the capability for one system, acting as a client, to invoke methods of another system, performing as
	Information Exchange versus Joint Task Execution.

	COM, DCOM, COM+
	Component Object Model (COM)
	Distributed Component Object Model (DCOM)
	Component Object Model Plus (COM+)
	Hiding reference counting from developers. With COM and DCOM, developers were responsible for managing the lifetime of components using IUnknown's AddRef and Release methods. With COM+, reference counting is handled automatically.
	Largely hiding the Interface Definition Language
	Provides a common set of types supported by all COM+ objects. Differences in the data types supported by different programming languages are problematic when attempting to create an interoperable system from a number of heterogeneous components. COM+ p

	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed.
	Capability for Application of Computer Aid for Model Correlation. The COM+ family does not allow for differences in the modeling of method signatures between systems. It requires that the method name and parameters be provided in the representation exp
	Required Knowledge of Remote Operations. The COM+ family requires partial knowledge of the methods available for execution on a remote server. Whereas details of the method name and the type and representation of required parameters are required by a c
	Required Modification to Existing System. COM’s
	Translation Methodology. In DCOM, the marshaling
	Capability for Application of Computer Aid for Translation Development. As discussed earlier, client proxy and server stub objects handle marshaling and unmarshaling of method parameters. These objects automatically handle differences due to hardware h
	Support for Federation Extensibility. Similar to CORBA, the COM+ family utilizes a client-server model for joint execution of tasks and exchange of information among components of a federation. Identification of the methods exposed by a server and invo
	Information Exchange versus Joint Task Execution.

	Java 2 Enterprise Edition (J2EE)
	J2EE Overview
	Data resources. Access to data is at the center of most multiuser computing applications. Some type of database is used to store the state of the system for just about any large system application. Standards such as SQL have provided software develope
	Naming and lookup of resources and services. The Java Naming and Directory Interface (JNDI) provides an API for accessing name and directory services. In addition to providing a generic interface for accessing name and directory services in a uniform
	Remote invocation or messaging. J2EE provides the capability for remote method invocation or message exchange using one or more of the following technologies. The capability for remote method invocation is provided by either Java Remote Method Invocati
	Transaction control. Integration of separate applications can be done using a messaging approach or a transactional approach. In a messaging approach, the primary concern is with getting data from one system to another. A transactional approach provid

	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed.
	Capability for Application of Computer Aid for Model Correlation. The crux of the distributed computing capability provided by J2EE is the capability for an application to invoke methods of an object residing in a different address space. In providing
	Required Knowledge of Remote Operations. In order for a client to access the methods of a server, it must obtain an object reference to the Java RMI server object. This object reference can be obtained using the JNDI; however, JNDI requires either the
	Required Modification to Existing System. If a c
	Translation Methodology. Java RMI uses Java Object Serialization to pass objects between systems. A serialized object is a machine-independent encoded form of the parameters and return values passed between a client and a server. The serialization mec
	Capability for Application of Computer Aid for Translation Development. Heterogeneities of hardware and operating systems are resolved under J2EE through the Java Virtual Machine and the use of Java Object Serialization for passing objects between appli
	Support for Federation Extensibility. Similar to
	Information Exchange versus Joint Task Execution. As stated in Section II.C.6.f(2) above, the cornerstone of the distributed computing capability provided by J2EE is the capability for an application to invoke the methods of an object residing in a di

	SeeBeyond Integration Suite
	e*GateTM Integrator Overview
	e*Gate Integrator Components. The e*Gate integrator consists of four core components, as depicted in Figure II-6: e*Ways, Intelligent Queues (IQs), Business Object Brokers (BOBs), and a central Registry.
	e*Gate Architecture. As shown in Figure II-7, e*Gate utilizes a layered architecture to separate high-level business process modeling from lower-level connectivity and translation concerns. The three layers, Views and Controls, Collaboration Logic, and
	eBusiness Integration With e*Gate. eBusiness integration using e*Gate involves six steps: Model, Generate, Configure, Collaborate, Monitor, and Manage (see Figure II-8). First, a business analyst uses e*Gate to model the top-level business practices

	e*Index Global Identifier Overview
	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed. SeeBeyond’s e*
	Capability for Application of Computer Aid for Model Correlation. e*Gate, on its own, does not provide support for correlation of information being exchanged between systems. A companion product, e*Index, does provide a limited capability for correlati
	Required Knowledge of Remote Operations. e*Gate in itself does not define a client-server architecture as do CORBA, COM+, and J2EE. Therefore, e*Gate does not provide facilities for client invocation of server methods. E*Gate does provide adapters for
	Required Modification to Existing System. e*Gate
	Translation Methodology. Although system interconnections in e*Gate are handled in a network-centric fashion, translation between different representations requires identification of the source and destination representations, effectively defining a poi
	Capability for Application of Computer Aid for Translation Development. e*Gate provides the capability to translate between different data representations by enabling the designer to 1) map elements of one representation to another, and 2) define the
	Support for Federation Extensibility. Sufficient information was not available from SeeBeyond to evaluate the support for federation extensibility provided by their products. While it is presumed that e*Gate provides some level of support for adding to
	Information Exchange versus Joint Task Execution. e*Gate focuses primarily on resolving issues relating to data interchange. Support for joint task execution is principally handled by using adapters for interfacing COM, CORBA, and Java and application

	The High Level Architecture for Modeling and Simulation (HLA)
	HLA Elements
	HLA Specification
	Object Model Template (OMT). The OMT prescribes the structure of the FOM for any HLA-compliant federation. A federation-specific FOM is created for each federation. The FOM describes the information that is shared among federates. Data exchange amo
	Interface Specification. The interface specifica
	HLA Rules. HLA Rules provide the design goals and constraints for HLA-compliant modeling and simulation systems. HLA Rules include Federation Rules that apply to the federation as a whole and stipulate how federates must interact and Federate Rules tha

	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed. The RTI has no notion of the type of an attribute or parameter; it deals with them as uninterpreted sequences of bytes. If source and destination federates differ in their interpretation of transmitted data, i.e., they
	Capability for Application of Computer Aid for Mo
	Required Knowledge of Remote Operations. HLA provides facilities for information exchange among federation components. Such information exchange is done through interaction between a federate and the RTI; federates do not interact explicitly as they mi
	Required Modification to Existing System. In order to participate in an HLA federation, federates must be HLA-compliant. Federates must comply with the HLA Interface Specification in order to communicate with the RTI. They must also follow the princip
	Translation Methodology. The translation methodo
	Capability for Application of Computer Aid for Translation Development. HLA places the burden of interpreting attributes and parameters on the federates. However, it does not provide any support to the developer for creating translations to compensate
	Support for Federation Extensibility. Under the HLA, each federation defines a Federation Object Model (FOM) that describes the data and occurrences that are shared among federates. The FOM consists of object classes and interaction classes. Object
	Information Exchange versus Joint Task Execution.

	eXtensible Markup Language (XML)
	XML basics
	Well-formedness. A document is not an XML docume
	Validity. An XML document is valid if it has an associated DTD or XML Schema and if the document complies with that schema. A schema further constrains the syntax of the XML document and also adds an implied semantics to the XML document through the te

	Constraining Content
	Document Type Definition \(DTD\). A DTD speci�
	XML Schema. The XML Schema addresses each of the limitations seen with the use of DTDs for constraining document content. First, XML Schema provides a number of primitive, generated, and user-defined data types for specifying data content. Primitive t

	Programmatic Access
	Simple API for XML (SAX). SAX provides access to documents as a sequence of events. It works as follows. A SAX parser sequentially processes an XML document, signaling an event when a specified item such as an open tag or close tag is found. The pr

	Translations
	XML Data-Binding
	An Object-Oriented View. If you view an XML schema in object-oriented terms, it can be equated to a class. Furthermore, an XML document, which is described and constrained by a particular schema, can be equated to an object. XML data binding is Java m
	Definition. The Java Architecture for XML Binding (JAXB) Working Draft Specification [Rei01] defines XML data-binding as a facility containing two components: A schema compiler and a marshaling framework. The schema compiler binds components of an i
	Why Use Data-Binding? The parse trees of the W3C DOM API and parser events of the SAX API are primitive, constricting, and more focused on the structure vice the content of a XML document. Also, the DOM and SAX APIs treat all data as strings requiring

	Evaluation of Interoperability Approach
	Types of Heterogeneity Addressed.
	Capability for Application of Computer Aid for Model Correlation. While there are tools available for creating XSLT stylesheets that map one XML format to another, there are no tools available that help determine the correspondence between two XML forma
	Required Knowledge of Remote Operations. XML doe
	Required Modification to Existing System. As ind
	Translation Methodology. Use of XSLT to resolve heterogeneities of structure and meaning could be accomplished using either a point-to-point or two-step translation process. Translation of shared information could be accomplished using XSLT to convert
	Capability for Application of Computer Aid for Translation Development. XSLT provides the capability for resolving representational differences related to heterogeneities of structure and meaning using a declarative approach for converting between repre
	Support for Federation Extensibility. Although X
	Information Exchange versus Joint Task Execution. XML provides the means for representing the data used by and shared among applications. It does not provide the capability for one application to execute the methods from another as do CORBA, COM+, or J

	SUMMARY

	THEORETICAL FOUNDATION FOR COMPONENT SYSTEM OBJECT CORRELATION
	CORRELATION MEASURES OF EFFECTIVENESS
	DATA CORRELATION METHODS
	Classical Approaches
	Browsing
	Keyword Matching
	Multi-Attribute Search
	Faceted Classification. The typical classificati

	Classical Approach Applicability to Interoperability Correlation Problem

	Formal Specifications
	Syntax Based Approach
	Signature Matching. Zaremski and Wing [ZW93] address the correlation problem in the context of software reuse. They introduce signature matching as a means of locating reusable components in a library for subsequent retrieval and adaptation for use in

	Semantics Based Approach
	Approach Using Component Syntax and Semantics
	Query by Consistency. Steigerwald [Ste91] takes
	Multi-Level Filtering. As initially reported by
	Improved Multi-Level Filtering. Nguyen’s multi-l

	Formal Specifications Applicability to Interoperability Correlation Problem

	Artificial Intelligence Approaches
	Natural Language Techniques
	Full-text Information Retrieval. DELTA (Data Element Tool-Based Analysis) [BFH+95] provides a methodology to correlate data elements in existing legacy systems. The methodology involves the use of a set of prescribed tools to perform the correlation.

	Neural Networks
	Metadata Extraction Using DBMS-Specific Parsers. There are three levels of metadata that can be automatically extracted from a database: attribute names (dictionary level), schema information (field specification level), and data contents and statis
	Normalization of Metadata. Inputs to the neural
	Classifier. A classifier algorithm is used to cluster attributes from a single database into related categories. Grouping information in a database into clusters reduces the problem size and resultant neural network training time by reducing the number
	Category Learning and Recognition Neural Networks. The cluster center weight vectors output by the classifier are used as training data for a back-propagation network. Then, when the trained neural network is provided signatures of attributes from anot
	Experimental Results. The authors presented their results from using SEMINT to provide attribute correspondences for three separate database integration problems. In the first problem, they used SEMINT to correlate attributes from similar databases fro

	Applicability of Artificial Intelligence Approaches to Interoperability Correlation Problem

	SUMMARY

	OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)
	INTRODUCTION
	METHODS FOR RESOLVING HETEROGENEITY AMONG SYSTEMS
	OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)
	Federation Interoperability Object Model (FIOM)
	Categories of Modeling Differences
	FIOM Composition
	Capturing Real-World Entities and Views. The real-world entities whose state and behavior information are shared among a federation of interoperating systems are modeled in the OOMI as a Federation Entity (FE). The FE provides an abstract model of th
	Capturing Federation Entity View (FEV) Representations. In addition to differences in what characteristics are chosen to model a real-world entity, different component systems may also represent the same characteristics differently. As discussed in S
	Mechanisms for Resolving Differences in View and Representation. The FIOM includes two mechanisms for resolving differences in view and representation among component and federation models. The first mechanism, the FCR-CCR Translation, is used to resol

	OOMI Integrated Development Environment (IDE)
	OOMI Translator

	SUMMARY

	OBJECT-ORIENTED METHOD FOR INTEROPERABILITY INTEGRATED DEVELOPMENT ENVIRONMENT�(OOMI IDE)
	OOMI IDE PURPOSE
	OOMI IDE DEVELOPMENT CONSIDERATIONS
	FEDERATION INTEROPERABILITY OBJECT MODEL (FIOM) CONSTRUCTION PROCESS
	Add Component System External Interface
	Manage Federation Entities (FEs)
	Register Component Class Representation (CCR)
	Finding FE Corresponding To CCR Being Registered
	Modifying FIOM to Provide Required Correspondence Between CCR and FCR Schema
	Adding CCR to FEV Whose FCR Schema Exhibits a One-To-One Correspondence with the CCR Schema Being Registered
	Adding Translations Between Component And Federation Class Representations Of Real-World Entity

	Update Federation Ontology
	Generate System-Specific Translator Information

	OOMI IDE PROTOTYPE
	User Interface
	FIOM Construction Manager
	Federation Entity Manager
	FE Creation. FE creation can be accomplished in either a top-down or bottom-up manner. During top-down FE creation, done during the Manage Federation Entities phase of FIOM construction, the interoperability engineer knows up front that certain informa
	Component Model Creation. The next function handled by the Federation Entity Manager is the creation of a component system object model of the real-world entities whose information and operations are exported from or imported to a component system. Thi
	Modifying FIOM (If Necessary) to Add Component Model to FE. From the CCR thus created, the interoperability engineer either locates an existing FE in the FIOM that pertains to the same real-world entity as the CCR or modifies the FIOM to add an FE for
	Adding Component Entity Model to FE. Once an FE with FEV and FCR Schema corresponding to the CCR Schema being registered is either found in the FIOM or created, the Federation Entity Manager provides the capability to add the CCR, with included CCR Sche

	Component Model Correlator
	Translation Generator

	Translator Information Generator
	Federation Ontology Manager
	FIOM Database
	Translation Library
	Federation Ontology Database
	Translator Information Database

	OOMI IDE PROTOTYPE USER INTERFACE DESIGN
	OOMI IDE GUI Components
	FIOM Construction Phase Folders
	OOMI IDE Toolbar, and Directory and Display Panes
	ADD Component System External Interface
	MANAGE Federation Entities
	REGISTER Component Class Representation
	UPDATE Federation Ontology
	GENERATE System-Specific Translator Information

	SUMMARY

	COMPONENT SYSTEM OBJECT CORRELATION UNDER THE OBJECT ORIENTED METHOD FOR�INTEROPERABILITY (OOMI)
	CORRELATION OF COMPONENT SYSTEM AND FEDERATION REPRESENTATIONS OF A REAL-WORLD ENTITY
	OOMI CORRELATION METHODOLOGY
	Generating Syntactic and Semantic Information Used in the Correlation Process
	Generating Components Used By Semantic Matching Process
	Generating Components Used By Syntactic Matching Process

	Using Syntactic and Semantic Information to Correlate Component and Federation Representations of Real-World Entities
	Semantic Correlation Process
	Syntactic Correlation Process

	SUMMARY

	OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI) TRANSLATOR
	TRANSLATOR OVERVIEW
	TRANSLATOR ARCHITECTURAL ALTERNATIVES
	TRANSLATOR FUNCTION
	Source To Intermediate Model Translation
	Converting From XML to Object Representation of Exported Information
	Translation From Source Object Representation to Intermediate Object Representation
	Converting From Intermediate Object Representation of Exported Information to XML Instance Document Representation

	Intermediate To Destination Model Translation
	Converting From XML Document Representation back to Intermediate Object Representation
	Resolving Differences in View between Received Intermediate Model and Destination Model of Real-World Entity
	Translation From Intermediate Object Representation to Destination Object Representation
	Converting From Destination Object Representation to Destination XML Document Representation

	TRANSLATOR SUMMARY

	CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
	REVIEW OF CRITERIA USED FOR EVALUATING INTEROPERABILITY APPROACHES AND LIMITATIONS SEEN IN CURRENT SYSTEMS
	EVALUATION OF OBJECT-ORIENTED METHOD FOR INTEROPER˜ABILITY AGAINST INTEROPERABILITY COMPARISON CRITERIA
	Types of Heterogeneity Addressed
	Capability for Application of Computer Aid for Model Correlation
	Required Knowledge of Remote Operations
	Required Modification to Existing System
	Translation Methodology
	Capability for Application of Computer Aid for Translation Development
	Support for Federation Extensibility
	Information Exchange Versus Joint Task Execution

	RECOMMENDATIONS FOR FUTURE RESEARCH
	Evaluation of Efficiency and Effectiveness of OOMI in Creating an Interoperable Federation of Systems
	Enhancements to Correlation Methodology
	Semantic Correlation Methodology
	Syntactic Correlation Methodology

	Enabling Join Operations for Federation Entity View Definition
	Expansion of Correlation Methodology Application During FIOM Construction
	Application of Correlation Methodology to Mapping of Corresponding Attributes and Operations during Translation Generation.
	Application of Correlation Methodology and Behavioral Equivalence Determination Algorithms to Modification of FIOM to Provide Required One-To-One Correspondence Between CCR and FCR Schemas During CCR Registration.

	Extending OOMI IDE to Operate as a Distributed Network Application
	Resolution of Modeling Differences in Real-Time Systems

	CONCLUDING REMARKS

	APPENDIX A: MODIFYING FIOM TO PROVIDE REQUIRED CORRESPONDENCE BETWEEN CCR AND FCR SCHEMAS DURING CCR REGISTRATION
	ADDING NEW FEDERATION ENTITY (FE) TO FEDERATION INTEROPERABILITY OBJECT MODEL (FIOM)
	ADDING COMPONENT CLASS REPRESENTATION (CCR) TO EXISTING FEDERATION ENTITY (FE)
	Adding CCR to Existing Federation Entity View (FEV)
	Adding New View to FE
	CCR Schema Properties Subset of FCR Schema Properties
	FCR Schema Properties Subset of CCR Schema Properties
	CCR and FCR Schema Have Properties in Common, But No Subset Relation Exists.
	No Correspondence Between CCR and FCR Schemas

	SUMMARY

	LIST OF REFERENCES.
	INITIAL DISTRIBUTION LIST

